理论
BonjourDurant
UCLA在读研究生,天秤座一枚,未来计划在湾区工作。喜欢研究数据结构和日语,不喜欢吃甜食,最喜欢的歌手是米津玄师。
展开
-
如何称为AI工程师系列【2】
本篇主要介绍拟合与误差,以及调参等 1. 经验误差与过拟合 学习在训练集上的误差称为“训练误差”,而在新样本上误差称为“泛化误差”。 实际上,我们通常得不到泛化性能很好的模型,原有有两种: 过拟合(overfitting): 学习能力过于优秀,学到一些非一般的特性。 欠拟合(underfitting):对训练样本的一般性质尚未学好。 机器学习面临的问题一般是NPNPNP难问题(什么是NP),因此只要相信NP≠PNP\ne PNP=P那么过拟合将无法避免。 下面简单介绍从训练集得到测试集的方法: .原创 2020-09-03 13:24:01 · 192 阅读 · 0 评论 -
如何成为AI工程师系列【1】
学完算法,还想更深入一步,那么接触一下机器学习,是很有必要的,你需要知道当下为什么ML这么火,包括自动驾驶,人脸识别等都与之相关。有些甚至基本算法理论无法解释。 参考周志华《机器学习》 任务: 分类(classification): 预测离散值。 回归(regression):预测连续值。 一般地,我们对训练集(x1,y1),⋅⋅⋅,(xm,ym){(x_1,y_1),···,(x_m,y_m)}(x1,y1),⋅⋅⋅,(xm,ym)进行学习,建立一个从输入空间χ\chiχ到输出空间Υ\Up.原创 2020-09-03 13:21:02 · 215 阅读 · 0 评论