POJ 1990 :MooFest 线段树

11 篇文章 0 订阅
2 篇文章 0 订阅
本文介绍了一种算法问题,即如何计算一群排列成直线的牛之间的沟通总能耗。每头牛有自己的声调和坐标,沟通能耗由声调的最大值与牛之间距离的乘积决定。文章提出了一种解决方案,包括对牛按声调排序并使用树状数组记录坐标信息。
摘要由CSDN通过智能技术生成

FJ n 头牛,排列成一条直线(不会在同一个点),给出每头牛在直线上的坐标 x 。另外,每头牛还有一个自己的声调 v ,如果两头牛( i j )之间想要沟通的话,它们必须用同个音调 max(v[i],v[j]),沟通起来消耗的能量为: max(v[i],v[j])dis(i,j) 。问要使所有的牛之间都能沟通(两两之间),总共需要消耗多少能量。

大概我们可以先把他们按照v从大到小排个序
然后来两个树状数组记录一下他前面有多少头牛,以及牛的横坐标的前缀和
然后……就能算了
然后算完一个删除一个……就行了

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
#define N 20000+5
#define M 80000+5
using namespace std;

long long tr[M],sum[M];

struct ask
{
    long long x;
    long long val;
    int pos;
}q[N];

inline int read()
{
    int x=0,f=1;char ch = getchar();
    while(ch < '0' || ch > '9'){if(ch == '-')f=-1;ch = getchar();}
    while(ch >='0' && ch <='9'){x=(x<<1)+(x<<3)+ch-'0';ch = getchar();}
    return x*f;
}

bool cmp1(const ask &a,const ask &b)
{
    return a.x < b.x;
}

bool cmp2(const ask&a,const ask&b)
{
    return a.val > b.val;
}

inline void updata(int k)
{
    tr[k] = tr[k<<1]+tr[k<<1|1];
    sum[k] = sum[k<<1]+sum[k<<1|1];
}

void build(int k,int l,int r)
{
    if(l==r){sum[k]=1,tr[k]=q[l].x;return;}
    int mid = (l+r)>>1;
    build(k<<1,l,mid);
    build(k<<1|1,mid+1,r);
    updata(k);
}

inline void change(int k,int l,int r,int pos)
{
    if(l==r)
    {
        tr[k] = sum[k] = 0;
        return;
    }
    int mid = (l+r)>>1;
    if(pos<=mid)change(k<<1,l,mid,pos);
    else change(k<<1|1,mid+1,r,pos);
    updata(k);
}

int asksum(int k,int l,int r,int x,int y)
{
    if(l==x && r==y)
        return tr[k];
    int mid = (l+r)>>1;
    if(y<=mid)return asksum(k<<1,l,mid,x,y);
    else if(x>mid)return asksum(k<<1|1,mid+1,r,x,y);
    else return asksum(k<<1,l,mid,x,mid)+asksum(k<<1|1,mid+1,r,mid+1,y);
}

int asknum(int k,int l,int r,int x,int y)
{
    if(l==x && r==y)
        return sum[k];
    int mid = (l+r)>>1;
    if(y<=mid)return asknum(k<<1,l,mid,x,y);
    else if(x>mid)return asknum(k<<1|1,mid+1,r,x,y);
    else return asknum(k<<1,l,mid,x,mid)+asknum(k<<1|1,mid+1,r,mid+1,y);
}

int main()
{
    int n = read();
    for(int i=1;i<=n;++i)
        q[i].val=read(),q[i].x=read();
    sort(q+1,q+n+1,cmp1);
    for(int i=1;i<=n;++i)
        q[i].pos = i;
    build(1,1,n);
    sort(q+1,q+n+1,cmp2);
    long long ans = 0;
    for(int i=1;i<=n;++i)
    {
        int num = asknum(1,1,n,1,q[i].pos);
        long long bsum = asksum(1,1,n,1,q[i].pos);
        num--;
        bsum-=q[i].x;
        long long tmp1 = num * q[i].x - bsum;
        long long tmp2 = tr[1]-bsum-q[i].x;
        long long tmp3 = sum[1]-num-1;
        tmp3 *= q[i].x;
        tmp2 -= tmp3;
        tmp1 += tmp2 ;
        ans += q[i].val * tmp1;
        change(1,1,n,q[i].pos);
    }
    cout<<ans<<endl;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值