Codeforces 719E 矩阵乘法+线段树
题目大意:
给定一个数列,请完成下面的两种操作
1.1 1 r z [l,r] 区间加上一个数 z
2.2 l r 查询
例如 序列 1 3 2 4 5 ,2 2 3的结果就是 fib(2)+fib(2)+fib(3)=4
区间的加法我们很容易想到线段树,但是这时求得已经不是原区间的和了,而是在 fib 数列中对应项的和,我们考虑转化
首先,正常求 fib 数列的第 k 项,我们可以利用矩阵乘法快速求出,大概是
由于矩阵乘法具有结合律,将中间的矩阵快速幂再乘上第一个矩阵可以得到最后想要的
fib(i)
,在这道题目中,我们其实还用到了另外一个性质:矩阵乘法在合法的情况下具有分配率,即
E∗(A+B)=E∗A+E∗B
且
(A+B)∗E=A∗E+B∗E
考虑在线段树上直接挂矩阵,我们可以在区间上传的时候将线段树上左右两个矩阵相加,在修改的时候传一个中间的矩阵的修改次幂,然后在sum和lazy上分别乘上,然后就是正常的lazy标记了
大概 在线段树上直接挂矩阵进行运算的想法还是很妙的。
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <iostream>
const int mod = 1e9+7;
typedef long long LL;
using namespace std;
const int M = 400005;
struct Matrix
{
int n;
int m;
long long a[3][3];
Matrix () {};
Matrix (int x,int y)
{
n=x;
m=y;
memset(a,0,sizeof(a));
}
};
Matrix operator+(const Matrix &a,const Matrix &b)
{
Matrix res (a.n,a.m);
for(int i=0;i<a.n;++i)
for(int j=0;j<b.m;++j)
(res.a[i][j] += a.a[i][j] + b.a[i][j])%=mod;
return res;
}
Matrix operator*(const Matrix &a,const Matrix &b)
{
Matrix res (a.n,b.m);
for(int i=0;i<a.n;++i)
for(int j=0;j<b.m;++j)
for(int k=0;k<a.m;++k)
(res.a[i][j] += a.a[i][k] * b.a[k][j])%=mod;
return res;
}
Matrix pow(Matrix a,LL b)
{
Matrix res (a.n,a.m);
for(int i=0;i<a.n;++i)
for(int j=0;j<a.m;++j)
res.a[i][j] = (i == j);
for(;b;b>>=1,a=a*a)
if(b&1)
res = res * a;
return res;
}
struct seg
{
Matrix lazy,sum;
bool flag;
}tr[M];
void init(Matrix &b)
{
b.n = b.m =2;
for(int i=0;i<b.n;++i)
for(int j=0;j<b.m;++j)
b.a[i][j] = (i == j);
}
Matrix fib_init_Fir(int x)
{
Matrix res(2,2);
res.a[0][0] = res.a[1][0] = res.a[0][1] = 1;
return pow(res,x-1);
}
Matrix fib_init_Sec(int x)
{
Matrix res(2,2);
res.a[0][0] = res.a[1][0] = res.a[0][1] = 1;
return pow(res,x);
}
void updata(int k)
{
tr[k].sum = tr[k<<1].sum + tr[k<<1|1].sum;
}
void down(int k)
{
if(tr[k].flag)
{
tr[k<<1].lazy = tr[k].lazy * tr[k<<1].lazy;
tr[k<<1|1].lazy = tr[k].lazy * tr[k<<1|1].lazy;
tr[k<<1].sum = tr[k<<1].sum * tr[k].lazy;
tr[k<<1|1].sum = tr[k<<1|1].sum * tr[k].lazy;
tr[k<<1].flag = tr[k<<1|1].flag = 1;
tr[k].flag = 0; init(tr[k].lazy);
}
}
inline int read()
{
int x = 0, f = 1; char ch = getchar();
while (ch < '0' || ch > '9') { if (ch == '-') f = -1; ch = getchar(); }
while (ch >= '0' && ch <= '9') { x = x * 10 + ch - '0'; ch = getchar(); }
return x * f;
}
void build(int k,int l,int r)
{
if(l==r)
{
int x = read();
tr[k].sum = fib_init_Fir(x);
init(tr[k].lazy); tr[k].flag = 0 ;
return ;
}
tr[k].sum = Matrix(2,2); init(tr[k].lazy);tr[k].flag = 0;
int mid = (l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
updata(k);
}
void change(int k,int l,int r,int x,int y,Matrix tmp)
{
if(x <= l && r <= y)
{
tr[k].lazy = tr[k].lazy * tmp;
tr[k].flag = 1;
tr[k].sum = tr[k].sum * tmp;
return ;
}
down(k);
int mid = (l+r)>>1;
if(x <= mid)change(k<<1,l,mid,x,y,tmp);
if(y > mid) change(k<<1|1,mid+1,r,x,y,tmp);
updata(k);
}
LL ask(int k,int l,int r,int x,int y)
{
if(x <= l && r <= y) return tr[k].sum.a[0][0];
int mid = (l+r)>>1;
down(k);
LL ans = 0;
if(x <= mid) ans += ask(k<<1,l,mid,x,y);
if(y > mid) ans += ask(k<<1|1,mid+1,r,x,y);
updata(k) ;
return ans % mod;
}
void out(Matrix &a)
{
for(int i=0;i<a.n;++i)
{
for(int j=0;j<a.m;++j)
printf("%d ",a.a[i][j]);
puts("");
}
}
int main()
{
int n = read(), m = read();
build(1,1,n);
// out(tr[1].lazy);
while(m--)
{
int op = read(), l = read() , r = read();
if(op == 1)
{
int x = read();
change(1,1,n,l,r,fib_init_Fir(x+1));
}
else printf("%I64d\n",ask(1,1,n,l,r));
}
}