关于机器写小说或者写文章的调研

有一天机器可以写小说吗
      从马尔可夫模型到神经网络,把自然语言生成的层级从句子拉到了诗词(段落)。然而如果是写一篇文章、一篇小说,那又如何实现呢?关于RNN的方法在本质是根据前面的字来预测下一个字,也就是说在生成的时候其实是没有整句话的信息的。这显然与人类在写文章的时候会首先想好要讲什么是有些不同的。 变分自动编码器VAE的提出,设法在RNN之上运用全域的信息,而这个信息可以是句子的特征,也可以是句子的主题等。虽然这样的架构允许我们在生成的时候使用上整句的信息,但是在整篇文章的层级,这显然是不够的。
(os:下一步可以去看看VAE喽)
      写出通顺的句子并不难,基于RNN的语言模型在学习了一定量自然语言的语料之后,不给任何输入,或者给一个开头,就可以生成出像模像样的句子来。但是,一旦生成多个句子之后,往往读起来似懂非懂,不明白它到底想要说什么。这是因为,机器人只是学到了常见的词语、搭配和句子,但它没有想要表达的目标。
      所以一个研究的难点也可以说是切入点吧,就是怎样来控制机器人写作的内容。包括以下几个方面吧:

  • 由人给定写作的一些关键词
  • 给定写作主干,由机器来进行扩充描写
  • 在对话中,给出一句,由机器来主动完成下一句
  • 输入一幅图,由机器人来描述这幅图表现的场景

          对于如何让多个句子之间逻辑通顺,这对人工智能技术的要求就不仅仅是语言的层面,还涉及知识表示、推理和常识。作家在写文章时,对这个世界有很多潜在的设定。可是机器对这个世界的了解还远没有达到那种程度,很多常识性的东西可能并不能理解。例如,作家知道,下雨的时候,在户外如果不打伞可能会淋湿;一个人出现在一个地方,同时不会出现在另一个地方。但是目前的人工智能技术还很难广泛地刻画这些常识,即使有大量结构化的知识网络,因为推理的不完善,机器人还是不能完全知道一个事实会影响哪些细节。

      如何讲一个故事,也就是需要在整体上安排段落。

      核心的困难并不是写作本身,而是机器人无法自动判定是否写的对,写的好。一般这应该需要常识、推理甚至情感的感受力。
      所以,或许可以从如下方面着手,涉及一个目标函数和反馈,使机器学得上下句之间的关联,在进行书写的时候可以通过上一句的信息来决定接下来的写作。

没有更多推荐了,返回首页