1094. The Largest Generation (25)
A family hierarchy is usually presented by a pedigree tree where all the nodes on the same level belong to the same generation. Your task is to find the generation with the largest population.
Input Specification:
Each input file contains one test case. Each case starts with two positive integers N (<100) which is the total number of family members in the tree (and hence assume that all the members are numbered from 01 to N), and M (<N) which is the number of family members who have children. Then M lines follow, each contains the information of a family member in the following format:
ID K ID[1] ID[2] ... ID[K]
where ID is a two-digit number representing a family member, K (>0) is the number of his/her children, followed by a sequence of two-digit ID's of his/her children. For the sake of simplicity, let us fix the root ID to be 01. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print in one line the largest population number and the level of the corresponding generation. It is assumed that such a generation is unique, and the root level is defined to be 1.
Sample Input:23 13 21 1 23 01 4 03 02 04 05 03 3 06 07 08 06 2 12 13 13 1 21 08 2 15 16 02 2 09 10 11 2 19 20 17 1 22 05 1 11 07 1 14 09 1 17 10 1 18Sample Output:
9 4
#include<stdio.h> #include<stdlib.h> #include<math.h> #include<string.h> #include<algorithm> #include <vector> #include<stack> #include <queue> #include<map> #include<iostream> #include <functional> #define MAX 110 #define MAXD 10001 #define TELNUM 10 using namespace std; struct node{ vector<int>child; }Node[110]; bool visit[110]; int Depth[110] = {0}; int n,m,count1 = 0; void DFS(int root,int depth) { for(int i = 0; i < Node[root].child.size(); i++)/*遍历root根结点下的所有子结点*/ { DFS(Node[root].child[i],depth + 1); Depth[depth]++; } } int main(void) { scanf("%d%d",&n,&m); int k,root,child,R; for(int i = 0; i <= n; i++) { visit[i] = false; } for(int i = 0; i < m; i++)/*构建树*/ { scanf("%d%d",&root,&k); for(int j = 0; j < k; j++) { scanf("%d",&child); Node[root].child.push_back(child); visit[child] = true; } } for(int i = 1; i <= n; i++)/*找出根结点*/ { if(visit[i] == false) { R = i; break; } } DFS(R,2);/*根结点那层算第一层,函数第一次进入的时候就是就是计算第2层结点的个数了*/ int max = 0,index; Depth[1] = 1;/*因为只有一个根结点,根结点那层为1个结点*/ for(int i = 1; i < 110; i++) { if(Depth[i] > max) { max = Depth[i]; index = i; } } printf("%d %d",max,index); return 0; }