贪心算法的思路:注意数值代表的是可以跳跃的最大长度,也就是说是最多可以跳这么远,但是不跳这么远也行。看示例:
[2,3,1,1,4]
i= 0,第一次站在数字2的位置,最多可以跳两个,也就是活可以跳到3(下标1)的位置,也可以跳到1(下标2)的位置。那跳到哪个位置好呢?首先肯定会向哪儿的数值越大就跳到哪儿,但是这样不是很对,虽然这儿确实是跳到3的地方好。
因为,3的位置相对与1的位置来说,3靠前一个身位,假设我跳到3,后续从3往后跳的时候,还是会经过3后面的1,我们在考虑跳到哪儿的时候,就需要将这个1考虑进去,不过这儿3 > 1+1,所以跳到3就行了。
但是如果例子是这样:
[2,3,2,1,4]
其实第一步跳到3或者2的位置都是一样的效果,因为3 = 2+1,从这两个位置往后继续走得到的结果是一样的,都是两次。
如果又是这样:
[3,3,1,2,2,4]
第一步就需要跳到数字2(下标3)的位置才是最好的,因为(3,1+1,2+2)之间,最后一个最大。
大体的规律就是选择跳到哪儿的时候,每往后考虑一位,就+1。也就是说,我们在考虑跳到位置 j
还是位置 i
的时候(j < i),不仅要考虑两个位置对应的数值,还要考虑从位置 j
跳跃到位置 i
的消耗。
class Solution {
public:
int jump(vector<int>& nums) {
int res = 0, n = nums.size(), r = 0;
if(n <= 1) return 0;
while(r < n){
if(r + nums[r] >= n-1){//可以直接跳到末尾
++res;
break;
}
int max = 0, idx = 0;
for(int i = r+1, k = 0; i < r + 1 + nums[r]; ++i, ++k){//枚举可以跳到的所有点
if(nums[i] + k > max){
max = nums[i] + k;//k用来记录每次添加的1
idx = k;//记录对应下标(相对r)
}
}
++res;
r += idx + 1;//进行跳跃
}
return res;
}
};
看了官方题解;跳跃游戏 II - 跳跃游戏 II - 力扣(LeetCode)
对贪心算法的解释很形象:
例如,对于数组 [2,3,1,2,4,2,3],初始位置是下标 0,从下标 0 出发,最远可到达下标 2。下标 0 可到达的位置中,下标 1 的值是 3,从下标 1 出发可以达到更远的位置,因此第一步到达下标 1。
从下标 1 出发,最远可到达下标 4。下标 1 可到达的位置中,下标 4 的值是 4 ,从下标 4 出发可以达到更远的位置,因此第二步到达下标 4。