基本概念
先看一下维基百科中的简介:
积分变换:通过积分将一个函数从它的原始函数空间映射到另一个函数空间,在新的函数空间中,原始函数的一些性质可能比在原始函数空间中更容易表征和操作。
一般形式
将一元函数看作无穷维向量、二元看作无穷维矩阵的话,这里的积分式子就可以看作是矩阵向量的乘积。设
A
A
A 是一个矩阵,
x
\bm{x}
x 是一个向量,则
A
x
A\bm{x}
Ax 是另一个向量。
这种积分变换是由 K K K 确定的,它叫 kernel function。一些积分变换有逆变换,对应的核叫 inverse kernel K − 1 ( u , t ) K^{-1}(\bm{u}, \bm{t}) K−1(u,t)。这不就是矩阵的逆吗?
History
积分变换的前身是傅里叶级数,它将周期函数表示为正弦和余弦函数的和:
可以看到求系数的方式就是求积分。如果将离散向量
{
a
n
,
b
n
}
\{a_n, b_n\}
{an,bn} 看作离散函数
a
(
n
)
,
b
(
n
)
a(n), b(n)
a(n),b(n) 的话,那么求函数
f
(
x
)
f(x)
f(x) 的傅里叶级数系数的过程就可以看作积分变换,只不过得到的函数是离散的罢了(只在整数处有值)。
傅里叶级数的复数形式更清晰,把 n n n 当作变量,它就是积分变换,从函数 s ( x ) s(x) s(x) 变换到 c n c_n cn。
后来的傅里叶变换将函数从时域变换到频域:
这似乎是傅里叶级数的扩展,频率不再是离散的,而是连续的。关于其本质,B站的 3Blue1Brown 在视频《【官方双语】形象展示傅里叶变换》中通过将时域中的函数曲线缠绕在欧拉转盘上想象地展示了傅里叶变换的过程。
考虑将时域曲线以一定的速度(频率)缠绕在欧拉转盘上,当缠绕频率和时域频率不成倍数时,即缠绕一圈时,没有恰好缠绕时域的整个周期,那么缠绕就会显得非常乱,缠绕非常多时,曲线就会均匀分布在圆盘上,质心自然就在原点了。
当缠绕频率是时域频率的倍数时,比如每缠绕一周刚好缠绕曲线的两个周期,那么缠绕的分布将是这样的:
出现了俩叶花的情况,但这时质心还在原点。每周缠绕几个周期就会有几个花瓣。肯定有一种特殊情况啦,那就是每周缠绕一个周期:
函数曲线就会大部分缠绕在原点的一侧,从而质心偏离原点。那么神奇的事就发生了:假设一个函数 f ( t ) f(t) f(t) 是由很多很多不同频率的正弦波组成的,将其以一定的频率缠绕在欧拉转盘上,如果函数含有该频率的正弦波,质心就会偏离原点,反之则不然。这个缠绕机器就能分离出函数的不同频率的分量了。更具体的就不多说了。
其他的积分变换还包括拉普拉斯变换、拉动变换等。
积分变换都是线性操作,因为积分本身是线性运算。关于这一点,前面与矩阵向量乘法的类比已经说明了。