这个总结文章本来是学完复变函数之后的复习总结,打印应付考试用的,后来假期里面又添加了一些公式、注意点什么的,稍稍完善了一些。
本文主要整理自我的复变函数老师的课件和作业、相关教材和上课笔记,不做商用,侵删。
手打公式难免有些小问题,如果有什么错误欢迎大家指正哈,评论或者私信都可以。
这一篇包含积分变换的主要内容,包括:
- 傅里叶变换的定义和性质
- δ函数
- 拉普拉斯变换
注意:这里主要是从数学的角度来理解傅里叶变换,工程上可能会有所不同。
前文:复变函数一:复变函数
二、积分变换
傅里叶变换
- 傅里叶变换定义:
若
f
∈
L
(
−
∞
,
+
∞
)
f\in L(-\infty,+\infty)
f∈L(−∞,+∞),即:
∫
−
∞
∞
f
(
x
)
d
x
\displaystyle \int_{-\infty}^{\infty}f(x)dx
∫−∞∞f(x)dx收敛,记:
f
^
(
ω
)
=
F
[
f
(
x
)
]
=
1
2
π
∫
−
∞
∞
f
(
x
)
e
−
i
ω
x
d
x
\hat{f}(\omega)=\mathcal{F}[f(x)]=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}{f(x)e^{-i\omega x}dx}
f^(ω)=F[f(x)]=2π1∫−∞∞f(x)e−iωxdx
称为
f
^
(
ω
)
\hat{f}(\omega)
f^(ω)为
f
(
x
)
f(x)
f(x)的傅里叶变换。
- 傅里叶逆变换
若
f
∈
L
(
−
∞
,
+
∞
)
∩
C
1
(
−
∞
,
∞
)
f\in L(-\infty,+\infty)\cap C^1(-\infty,\infty)
f∈L(−∞,+∞)∩C1(−∞,∞),则有:
f
(
x
)
=
1
2
π
∫
−
∞
∞
f
^
(
ω
)
e
i
ω
x
d
ω
=
F
−
1
[
f
^
(
ω
)
]
f(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\hat{f}(\omega)e^{i\omega x}d\omega=\mathcal{F}^{-1}[\hat{f}(\omega)]
f(x)=2π1∫−∞∞f^(ω)eiωxdω=F−1[f^(ω)]
- 傅里叶变换的性质
-
对称性质
f ^ ( − ω ) = ( f ^ ( ω ) ) ∗ = F − 1 [ f ( x ) ] \hat{f}(-\omega)=(\hat{f}(\omega))^*=\mathcal{F}^{-1}[f(x)] f^(−ω)=(f^(ω))∗=F−1[f(x)] -
线性性质
F [ a 1 f 1 + a 2 f 2 ] = a 1 F [ f 1 ] + a 2 F [ f 2 ] \mathcal{F}[a_1f_1+a_2f_2]=a_1\mathcal{F}[f_1]+a_2\mathcal{F}[f_2]\\ F[a1f1+a2f2]=a1F[f1]+a2F[f2]
傅里叶变换是线性变换。 -
平移性质
F [ f ( x ± x 0 ) ] = e ± i ω x 0 F [ f ( x ) ] F [ f ( x ) e ± i ω 0 x ] = f ^ ( ω ∓ ω 0 ) \begin{aligned} & \mathcal{F}[f(x\pm x_0)]=e^{\pm i \omega x_0}\mathcal{F}[f(x)]\\ & \mathcal{F}[f(x)e^{\pm i \omega_0 x}]=\hat{f}(\omega \mp \omega_0) \end{aligned} F[f(x±x0)]=e±iωx0F[f(x)]F[f(x)e±iω0x]=f^(ω∓ω0) -
相似性质
F [ f ( k x ) ] = 1 ∣ k ∣ f ^ ( ω k ) , k ≠ 0 \mathcal{F}[f(kx)]=\frac{1}{|k|}\hat{f}(\frac{\omega}{k}),k\neq 0 F[f(kx)]=∣k∣1f^(kω),k=0 -
微分性质
F [ d d x f ( x ) ] = i ω F [ f ( x ) ] F [ x f ( x ) ] = i d d ω f ^ ( ω ) \begin{aligned} & \mathcal{F}[\frac{d}{dx}f(x)]=i\omega \mathcal{F}[f(x)]\\ & \mathcal{F}[xf(x)]=i\frac{d}{d\omega}\hat{f}(\omega) \end{aligned} F[dxdf(x)]=iωF[f(x)]F[xf(x)]=idωdf^(ω) -
积分性质
F [ ∫ x f ( ξ ) d ξ ] = 1 i ω F [ f ( x ) ] \mathcal{F}[\int^x f(\xi)d\xi]=\frac{1}{i\omega}\mathcal{F}[f(x)] F[∫xf(ξ)dξ]=iω1F[f(x)] -
卷积性质
F [ f 1 ( x ) ⋆ f 2 ( x ) ] = 2 π F [ f 1 ( x ) ] F [ f 2 ( x ) ] \mathcal{F}[f_1(x)\star f_2(x)]=\sqrt{2\pi}\mathcal{F}[f_1(x)]\mathcal{F}[f_2(x)] F[f1(x)⋆f2(x)]=2πF[f1(x)]F[f2(x)]
卷积的定义:
f 1 ( x ) ⋆ f 2 ( x ) = ∫ − ∞ ∞ f 1 ( ξ ) f 2 ( x − ξ ) d ξ f_1(x)\star f_2(x)=\int_{-\infty}^{\infty}f_1(\xi)f_2(x-\xi)d\xi f1(x)⋆f2(x)=∫−∞∞f1(ξ)f2(x−ξ)dξ -
守恒性质(perseval恒等式)
设 f ∈ L 1 ( − ∞ , + ∞ ) ∩ L 2 ( − ∞ , + ∞ ) f\in L^1(-\infty, +\infty)\cap L^2(-\infty, +\infty) f∈L1(−∞,+∞)∩L2(−∞,+∞),则有:
∫ − ∞ ∞ ∣ f ( x ) ∣ 2 d x = ∫ − ∞ ∞ ∣ f ^ ( ω ) ∣ 2 d ω \int_{-\infty}^{\infty}|f(x)|^2dx=\int_{-\infty}^{\infty}|\hat{f}(\omega)|^2d\omega ∫−∞∞∣f(x)∣2dx=∫−∞∞∣f^(ω)∣2dω
注:常用的一些傅里叶变换:
(1)
f
(
x
)
=
e
−
∣
x
∣
f
^
(
ω
)
=
2
π
(
1
+
ω
2
)
\begin{aligned} & f(x)=e^{-|x|}\\ & \hat{f}(\omega)=\frac{\sqrt{2}}{\sqrt{\pi}(1+\omega^2)} \end{aligned}
f(x)=e−∣x∣f^(ω)=π(1+ω2)2
(2)
∫
−
∞
∞
e
−
x
2
d
x
=
π
\int_{-\infty}^{\infty}e^{-x^2}dx=\sqrt{\pi}
∫−∞∞e−x2dx=π
(3)
F
[
e
−
x
2
]
=
1
2
e
−
ω
2
4
F
[
e
−
A
x
2
]
=
1
2
A
e
−
ω
2
4
A
\begin{aligned} & \mathcal{F}[e^{-x^2}]=\frac{1}{\sqrt{2}}e^{-\frac{\omega^2}{4}}\\ & \mathcal{F}[e^{-Ax^2}]=\frac{1}{\sqrt{2A}}e^{-\frac{\omega^2}{4A}} \end{aligned}
F[e−x2]=21e−4ω2F[e−Ax2]=2A1e−4Aω2
δ函数
- 定义:
δ ( x ) = { 0 , x ≠ 0 + ∞ , x = 0 a n d ∫ ∞ ∞ δ ( x ) φ ( x ) d x = φ ( 0 ) , ∀ φ ∈ C 0 ∞ ( R ) \delta(x)= \left\{ \begin{array}{rcl} & 0, x\neq 0\\ & +\infty, x=0 \end{array} \right . and \int_{\infty}^{\infty}\delta(x)\varphi(x)dx=\varphi(0), \forall \varphi \in C_0^{\infty}(\mathbb{R}) δ(x)={0,x=0+∞,x=0and∫∞∞δ(x)φ(x)dx=φ(0),∀φ∈C0∞(R)
- δ函数的一些性质
∫ − ∞ ∞ δ ( x − x 0 ) φ ( x ) d x = φ ( x 0 ) x δ ( x ) = 0 δ ( a x ) = 1 ∣ a ∣ δ ( x ) f ( x ) δ ( x − x 0 ) = f ( x 0 ) δ ( x − x 0 ) δ ( x − x 0 ) ⋆ f ( x ) = f ( x − x 0 ) \begin{aligned} & \int_{-\infty}^{\infty}{\delta(x-x_0)\varphi(x)dx}=\varphi(x_0)\\ & x\delta(x)=0\\ & \delta(ax)=\frac{1}{|a|}\delta(x)\\ & f(x)\delta(x-x_0)=f(x_0)\delta(x-x_0)\\ & \delta(x-x_0)\star f(x)=f(x-x_0) \end{aligned} ∫−∞∞δ(x−x0)φ(x)dx=φ(x0)xδ(x)=0δ(ax)=∣a∣1δ(x)f(x)δ(x−x0)=f(x0)δ(x−x0)δ(x−x0)⋆f(x)=f(x−x0)
- δ函数的积分和微分
-
δ函数的微分:
δ ( x − x 0 ) \delta (x-x_0) δ(x−x0)的导函数 ζ ( x − x 0 ) \zeta(x-x_0) ζ(x−x0)
δ ′ ( x − x 0 ) = ∫ − ∞ ∞ ζ ( x − x 0 ) φ ( x ) d x = − φ ′ ( x 0 ) , ∀ φ ( x 0 ) ∈ C 0 ∞ ( R ) \delta'(x-x_0)= \int_{-\infty}^{\infty}{\zeta(x-x_0)\varphi (x)dx}=-\varphi'(x_0),\forall \varphi(x_0)\in C_0^{\infty}(\mathbb{R}) δ′(x−x0)=∫−∞∞ζ(x−x0)φ(x)dx=−φ′(x0),∀φ(x0)∈C0∞(R) -
δ函数的积分 (Heaviside函数) :
H ( x ) = ∫ − ∞ x δ ( ξ ) d ξ = { 0 , x < 0 1 , x > 0 = 1 2 + 1 π ∫ 0 ∞ sin x ξ ξ d ξ \begin{aligned} H(x)=\int_{-\infty}^{x}\delta(\xi)d\xi= \left\{ \begin{array}{rcl} 0, x<0\\ 1,x>0 \end{array} \right . =\frac{1}{2}+\frac{1}{\pi}\int_0^{\infty}\frac{\sin x \xi}{\xi}d\xi \end{aligned} H(x)=∫−∞xδ(ξ)dξ={0,x<01,x>0=21+π1∫0∞ξsinxξdξ
- 傅里叶变换
δ ^ ( ω ) = F [ δ ( x ) ] = 1 2 π ∫ − ∞ ∞ δ ( x ) e − i ω x d x = 1 2 π F [ H ( x ) ] = 1 i ω 2 π + π 2 δ ( ω ) \begin{aligned} \hat{\delta}(\omega) & =\mathcal{F}[\delta(x)]=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{\infty}\delta(x)e^{-i \omega x}dx=\frac{1}{\sqrt{2\pi}}\\ \mathcal{F}[H(x)] & =\frac{1}{i\omega \sqrt{2\pi}}+\sqrt{\frac{\pi}{2}}\delta(\omega) \end{aligned} δ^(ω)F[H(x)]=F[δ(x)]=2π1∫−∞∞δ(x)e−iωxdx=2π1=iω2π1+2πδ(ω)
这注意阶跃函数的傅里叶变换不只是δ函数傅里叶变换除以iω,还要加上一个δ函数。
拉普拉斯变换
- 定义
定义函数
f
(
t
)
f(t)
f(t)的拉普拉斯变换:
L
[
f
(
t
)
]
=
f
‾
(
p
)
=
∫
0
∞
f
(
t
)
e
−
p
t
d
t
\mathcal{L}[f(t)] =\overline{f}(p)=\int_0^{\infty}f(t)e^{-pt}dt
L[f(t)]=f(p)=∫0∞f(t)e−ptdt
- 性质
-
线性性质
F [ a 1 f 1 + a 2 f 2 ] = a 1 L [ f 1 ] + a 2 L [ f 2 ] \mathcal{F}[a_1f_1+a_2f_2]=a_1\mathcal{L}[f_1]+a_2\mathcal{L}[f_2] F[a1f1+a2f2]=a1L[f1]+a2L[f2] -
平移性质
L [ e s t f ( t ) ] = f ‾ ( p − s ) L [ f ( t − τ ) ] = e − p τ f ‾ ( p ) 其 中 , s ∈ C , τ ∈ R 均 为 常 数 \begin{aligned} \mathcal{L}[e^{st}f(t)]=\overline{f}(p-s)\\ \mathcal{L}[f(t-\tau)]=e^{-p\tau}\overline{f}(p)\\ 其中,s\in \mathbb{C},\tau \in \mathbb{R}均为常数 \end{aligned} L[estf(t)]=f(p−s)L[f(t−τ)]=e−pτf(p)其中,s∈C,τ∈R均为常数 -
相似性质
L [ f ( k t ) ] = 1 ∣ k ∣ f ‾ ( p k ) , k > 0 \mathcal{L}[f(kt)]=\frac{1}{|k|}\overline{f}(\frac{p}{k}),k>0 L[f(kt)]=∣k∣1f(kp),k>0 -
微分性质
L [ f ( n ) ( t ) ] = p n f ‾ ( p ) − ( p n − 1 f ( 0 ) + p n − 2 f ( 1 ) ( 0 ) + ⋯ + f ( n − 1 ) ( 0 ) ) f ‾ ( n ) ( p ) = L [ ( − t ) n f ( t ) ] \begin{aligned} & \mathcal{L}[f^{(n)}(t)]=p^n \overline{f}(p)-(p^{n-1}f(0)+p^{n-2}f^{(1)} (0)+\dots+f^{(n-1)(0)})\\ & \overline{f}^{(n)} (p)=\mathcal{L}[(-t)^nf(t)] \end{aligned} L[f(n)(t)]=pnf(p)−(pn−1f(0)+pn−2f(1)(0)+⋯+f(n−1)(0))f(n)(p)=L[(−t)nf(t)] -
积分性质
L [ ∫ 0 t f ( τ ) d τ = 1 p f ‾ ( p ) ∫ p ∞ f ‾ ( s ) d s = L [ f ( t ) t ] \begin{aligned} & \mathcal{L}[\int_0^t f(\tau) d\tau=\frac{1}{p}\overline{f}(p)\\ & \int_p^{\infty}\overline{f}(s)ds=\mathcal{L}[\frac{f(t)}{t}] \end{aligned} L[∫0tf(τ)dτ=p1f(p)∫p∞f(s)ds=L[tf(t)] -
卷积性质
L [ f 1 ( t ) ⋆ f 2 ( t ) ] = f 1 ‾ ( p ) f 2 ‾ ( p ) \mathcal{L}[f_1(t)\star f_2(t)]=\overline{f_1}(p)\overline{f_2}(p) L[f1(t)⋆f2(t)]=f1(p)f2(p)