- 博客(311)
- 收藏
- 关注
原创 当风控开始“消费降级”:降本增效下的模型与策略生存指南
风控的“消费降级”,看似是寒冬,实则是行业走向成熟的契机。它逼迫我们:回归风控本质:不再迷恋技术黑盒,而是聚焦于对业务风险的深刻理解。追求极致效率:用最少的资源,解决最核心的问题。实现价值证明:清晰地量化风控对业务的贡献。当潮水退去,方知谁在裸泳。当预算收紧,才见风控的真功夫。这场“降本增效”的大考,对于有准备的风控人和风控团队来说,不是危机,而是确立自身核心价值的最佳时机。
2026-01-01 17:26:39
180
原创 播电商风控升级实战指南:从下单狂欢中精准识别刷单策略
一场看似火爆的直播间,可能每十个订单中就藏着三个虚假刷单,而风控系统正悄然运行,在每秒钟数万笔的交易中寻找蛛丝马迹。“双11”期间,消费者开启“买买买”模式的同时,各类直播电商的违规行为也更加活跃。北京的张女士在直播间花7元购买电动搅蒜机,收到坏货后联系商家,却被诱导加入“商家群”参与刷单任务,最终被骗5万多元。类似的刷单陷阱并非个案,尽管购物平台、商品各不相同,但受害者均在收货时遇到“质量问题”或“货不对板”,随后陷入诈骗陷阱。
2025-12-07 20:37:11
111
原创 冷启动:新业务没有数据,风控从0到1如何破局?
没有数据时,首先要回归业务本质,回答一个基本问题:在这个业务中,风险具体指什么?电商业务:欺诈交易、薅羊毛、恶意退货。信贷业务:逾期、坏账、身份欺诈、团伙欺诈。内容平台:违规内容、垃圾信息、恶意行为。定义风险后,接着要问:如果风险发生,我们会损失什么?金钱?用户?还是商誉?
2025-10-26 20:42:12
85
原创 反欺诈模型升级:如何从“抓坏人”到“提前阻止坏人作案”?
本文探讨了反欺诈模式从"事后追查"向"事前预防"的转变。传统方法依赖事后数据分析,而现代技术通过全网联防、预测评分和行为特征识别,在欺诈发生前进行干预。核心在于利用复杂网络分析、机器学习模型和生物行为识别技术,构建主动防御体系。文章以金融平台案例说明,新系统能在准备阶段识别风险账户,并提出了数据升级、模型建设、流程优化和人机协同四大实施步骤。未来反欺诈将发展为信任生态基础设施,实现"让坏人无从下手"的目标。
2025-10-07 19:48:53
222
原创 模型和策略:风控体系的“左右手”之争
风控系统中模型与策略的关系如同大脑与手脚,二者相辅相成。模型作为智能核心,通过机器学习算法分析数据、评估风险;策略则负责将模型输出转化为具体行动规则。二者缺一不可:模型为策略提供依据,策略让模型发挥价值。优秀的风控体系需要模型精准识别风险,策略制定合理应对方案,二者协同优化才能实现风险管控与业务发展的平衡。
2025-09-21 19:54:09
240
原创 从信贷审批到抖音推荐,你身边的“风控”无处不在
风控系统是数字世界的隐形守护者,通过数据分析和人工智能技术管理各类风险。信贷风控运用大数据和评分模型评估借款人资质;内容风控采用"机器+人工"协同过滤,确保平台内容合规;反诈风控通过实时监测拦截可疑交易。这些系统虽然不直接可见,却在贷款审批、内容推荐、资金安全等场景中发挥着关键作用,既保护企业利益,也为用户创造更安全的数字环境。
2025-09-21 19:46:13
184
原创 KBinsDiscretizer连续特征分箱
KBinsDiscretizer是scikit-learn中用于连续特征离散化的预处理工具,可将数值特征转换为有序分类特征。本文首先介绍了分箱的必要性,包括处理非线性关系、减少异常值影响、满足算法需求等。随后详细解析了KBinsDiscretizer的三个核心参数:n_bins(分箱数量)、encode(编码方式)和strategy(分箱策略)。最后通过实例演示了三种分箱方法的应用:等频分箱(quantile)、等宽分箱(uniform)和K-means分箱,分别展示了不同分箱策略的实际效果和边界点
2025-09-07 11:10:32
94
原创 【变量筛选】计算类别型变量IV值、KS值
本文针对风控建模中的类别型变量筛选问题,提出两种解决方案:一是转换为数值型变量后进行筛选,二是直接基于类别变量计算统计指标。重点介绍了第二种方法的具体实现过程。
2025-06-27 10:30:58
179
实现玩转Python全量代码-漫天雪花、冰墩墩、可达鸭、永恒心动、烟花、字符画、我的某某某、圣诞礼物、微信头像加圣诞树、
2023-10-14
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅
15