Escape from Tetris
Time Limit: 12000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1206 Accepted Submission(s): 326
Problem Description
由于整日整夜地对着这个棋盘,Lele终于走火入魔。每天一睡觉,他就会梦到自己会被人被扔进一个棋盘中,一直找不到出路,然后从梦中惊醒。久而久之,Lele被搞得精神衰弱。梦境是否会成为现实,谁也说不准,不过不怕一万只怕万一。现在Lele每次看到一个棋盘,都会想象一下自己被关进去以后要如何逃生。
Lele碰到的棋盘都是正方形的,其中有些格子是坏的,不可以走,剩下的都是可以走的。只要一走到棋盘的边沿(最外面的一圈),就算已经逃脱了。Lele梦见自己一定会被扔在一个可以走的格子里,但是不确定具体是哪一个,所以他要做好被扔在任意一个格子的准备。
现在Lele请你帮忙,对于任意一个棋盘,找出一个最短的序列,序列里可以包括"north"(地图里向上),"east"(地图里向右),"south"(地图里向下),"west"(地图里向左),这四个方向命令。不论Lele被扔在棋盘里的哪个好的格子里,都能按这个序列行走逃出棋盘。
逃脱的具体方法是:不论Lele被扔在哪里,Lele按照序列里的方向命令一个一个地走,每个命令走一格,如果走的时候会碰到坏的格子,则忽略这条命令。当然,如果已经逃脱了,就可以不考虑序列中剩下的命令了。
Lele碰到的棋盘都是正方形的,其中有些格子是坏的,不可以走,剩下的都是可以走的。只要一走到棋盘的边沿(最外面的一圈),就算已经逃脱了。Lele梦见自己一定会被扔在一个可以走的格子里,但是不确定具体是哪一个,所以他要做好被扔在任意一个格子的准备。
现在Lele请你帮忙,对于任意一个棋盘,找出一个最短的序列,序列里可以包括"north"(地图里向上),"east"(地图里向右),"south"(地图里向下),"west"(地图里向左),这四个方向命令。不论Lele被扔在棋盘里的哪个好的格子里,都能按这个序列行走逃出棋盘。
逃脱的具体方法是:不论Lele被扔在哪里,Lele按照序列里的方向命令一个一个地走,每个命令走一格,如果走的时候会碰到坏的格子,则忽略这条命令。当然,如果已经逃脱了,就可以不考虑序列中剩下的命令了。
Input
本题目包含多组测试,请处理至文件结束。
每组测试第一行包含一个正整数 N (0<N<9),代表棋盘的大小是 N*N
接下来有N行,每行N个字符代表这个棋盘。
其中0代表该位置是好的,可以走,1代表该位置是坏的,不可以走。
题目数据保证,对于任意一个棋盘,都存在题目中所要求的序列
每组测试第一行包含一个正整数 N (0<N<9),代表棋盘的大小是 N*N
接下来有N行,每行N个字符代表这个棋盘。
其中0代表该位置是好的,可以走,1代表该位置是坏的,不可以走。
题目数据保证,对于任意一个棋盘,都存在题目中所要求的序列
Output
对于每组数据,输出题目所要求的序列,序列中每个元素一行。
如果存在两个符合要求的序列,请输出字典序最小的那个序列。
两个测试之间请用一个空行隔开。
如果存在两个符合要求的序列,请输出字典序最小的那个序列。
两个测试之间请用一个空行隔开。
Sample Input
4 1101 0001 1100 1001
Sample Output
east north
Author
linle
Source
Recommend
lcy
一个人被困在迷宫除边界的某个位置,先让你求一个最短的字典序最小的行走方向的序列,使得无论在迷宫的哪个位置,都能依靠这个序列走出去(也就是走到不是墙的边界上)。如果下一步行走方向的位置是墙,那么这一步不执行。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
const int X[4]={0,-1,1,0};
const int Y[4]={1,0,0,-1};
using namespace std;
#define fi first
#define se second
bool mp[12][12];
int str[1000];
int n,m,step;
pair<int,int>Q[100];
int h[20][20];
queue<pair<int,int> >QQ;
inline void get_h(){
m=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(mp[i][j]){
if(i==1||j==1||i==n||j==n){
h[i][j] = 0;
QQ.push(make_pair(i,j));
}
else {
h[i][j] = 1000000;
Q[m++]=make_pair(i,j);
}
}
}
}
}
inline void bfs(){
while(!QQ.empty()){
int x = QQ.front().fi;
int y = QQ.front().se;
QQ.pop();
for(int k=0;k<4;k++){
int a = x + X[k];
int b = y + Y[k];
if(!a||!b||a>n||b>n)continue;
if(mp[a][b]){
if(h[x][y]+1<h[a][b]){
h[a][b] = h[x][y]+1;
QQ.push(make_pair(a,b));
}
}
}
}for(int i=0;i<m;i++){
int& x = Q[i].fi ;
int& y = Q[i].se ;
step = max(step,h[x][y]);
}
}
inline bool check(bool s[12][12]){
for(int i=2;i<n;i++){
for(int j=2;j<n;j++){
if(s[i][j]){
return false ;
}
}
}return true;
}
bool dfs(int step,int lim,bool m[12][12]){
bool nxt[12][12];
for(int k=0;k<4;k++){bool ok = true;
memset(nxt,0,sizeof(nxt));
str[step]=k;
for(int i=2;i<n;i++){
for(int j=2;j<n;j++){
if(m[i][j]){
int a = i + X[k],b = j + Y[k];
if(mp[a][b]){
if(!nxt[a][b]&&h[a][b]>lim-step+1){
i = n; j = n; ok = false ;
break;
}
nxt[a][b] = true;
}else {
if(!nxt[i][j]&&h[i][j]>lim-step+1){
i = n; j = n; ok = false ;
break;
}
nxt[i][j] = true;
}
}
}
}
if(!ok)continue;
if(step==lim&&check(nxt)){
return true;
}else if(step!=lim){
if(dfs(step+1,lim,nxt)){
return true;
}
}
}return false ;
}
int main()
{
int time = 0;
while(scanf("%d",&n)==1){
step=1;
for(int i=1;i<=n;i++){
char s[12];
scanf("%s",s);
for(int j=0;j<n;j++){
mp[i][j+1] = (s[j]-'0')^1;
}
}
get_h();
bfs();
if(time++){
printf("\n");
}
if(check(mp)){
continue;
}
for(;;step++){
if(dfs(1,step,mp)){
break;
}
}
for(int i=1;i<=step;i++){
if(str[i]==0){
printf("east\n");
}else if(str[i]==1){
printf("north\n");
}else if(str[i]==2){
printf("south\n");
}else {
printf("west\n");
}
}
}return 0 ;
}