解题报告:CROC 2016 - Elimination Round F. Cowslip Collections (莫比乌斯反演)

题目链接

题意:

给定一个大小为n(n<=1e5)的数字(ai<=1e6)集合,q次询问

每次询问给往集合中插入一个数,求当前集合的贡献

集合的贡献为所有大小为k的集合的gcd之和


思路:


f[ x ]:集合大小为k且gcd()==x的集合数量

num[ x ]:所有的数中x倍数的个数


那么答案为

刚开始想歪了:

想用树状数组维护后面的部分,均摊复杂度应该能过。。

但是维护树状数组的复杂度和约数个数有很大的关系

x的范围内,约数个数最多有240个,那么更新的复杂度达到O(8000log())

然后就TLE了

重新分析,发现也可以这么求:

就很容易了。。。



代码:

#include<bits/stdc++.h>



const int mod = 1e9+7;
const int N = 1e6+10;
using namespace std;

vector<int>pr,E[N];
int n,k,q,mu[N],num[N],fro[N],ni[N],f[N],A[N];
bool Np[N];
long long ans = 0;

inline long long qpow(long long x,long long y){
   long long res = 1;
   while(y){
      if(y&1)res = res * x % mod;
      y>>=1;
      x = x * x % mod;
   }return res;
}


inline long long C(int n,int m){
   return 1LL * fro[n] * ni[m] % mod * ni[n-m] % mod;
}

void init(){
   mu[1] = fro[0] = fro[1] = ni[0] = 1;
   for(int i=2;i<N;i++){
      fro[i] = 1LL * fro[i-1] * i % mod;
      if(!Np[i]){
         pr.emplace_back(i);
         mu[i] = -1;
      }for(int j=0,k=pr[0]*i;k<N;k=pr[++j]*i){
         Np[k] = true;
         if(i%pr[j]==0){
            mu[k] = 0;
            break;
         }mu[k] = -mu[i];
      }
   }ni[N-1] = qpow(fro[N-1],mod-2);
   for(int i=N-1;i>1;i--){
      ni[i-1] = 1LL * ni[i] * i % mod ;
   }
   for(int i=1;i<N;i++){
      for(int j=i;j<N;j+=i){
         num[i] += A[j];
         E[j].emplace_back(i);
      }
   }
   for(int i=N-1;i>=1;i--){
      A[i] = 0;
      if(num[i]>=k){
         A[i] = C(num[i],k);
         for(int j=0;j<E[i].size();j++){
            int d =E[i][j];
            f[d] += mu[i/d] * A[i];
            if(f[d]>=mod)f[d]-=mod;
            else if(f[d]<0)f[d]+=mod;
         }
      }if(f[i])ans = (ans+1LL*f[i]*i)%mod;
   }
}

inline int read()
{
    int x=0,f=1; char ch=getchar();
    while (ch<'0' || ch>'9') {if (ch=='-') f=-1; ch=getchar();}
    while (ch>='0' && ch<='9') {x=x*10+ch-'0'; ch=getchar();}
    return x*f;
}

inline void work(int x){
   for(int i=0;i<E[x].size();i++){
      int d = E[x][i];
      if( (ans -= 1LL*f[d]*d%mod) < 0 ) ans+=mod;
   }
   for(int i=E[x].size()-1,sum=0;i>=0;i--){
      int d = E[x][i];
      num[d]++;
      if(num[d]>=k){
         int de = C(num[d],k) - A[d];
         A[d] = de + A[d];
         if(de<0)de+=mod;
         for(int j=0;j<E[d].size();j++){
            int  dd = E[d][j];
            f[dd] += mu[d/dd] * de ;
            if(f[dd]>=mod)f[dd]-=mod;
            else if(f[dd]<0)f[dd]+=mod;
         }
      }ans = (ans+1LL*f[d]*d)%mod;
   }
}

int main()
{
   n = read();k = read();q = read();
   for(int i=0;i<n;i++){
      A[read()]++;
   }init();
   while(q--){
      work(read());
      printf("%I64d\n",ans);
   }return 0;
}



阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_32570675/article/details/77166186
个人分类: 数论 Codeforces
上一篇解题报告:Codeforces Round #325(Div. 1) E. Present for Vitalik the Philatelist (莫比乌斯反演)
下一篇解题报告:HDU_6136:Death Podracing (优先队列+循环链表)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭