解题报告:HDU_6129 Just do it (找规律 两种做法)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_32570675/article/details/77460498

题目链接


题意及官方题解:




思路:看到另一种做法,要巧妙一点,记录一下

解法一(官方):

打出当前位对后面位的贡献表,发现是个斜杨辉三角

只有组合数为奇数才用贡献,由Lucas可知组合数C(n,m)为奇数等价于(n&m)==m

这样就可以枚举m(1~n-1)快速更新答案

虽然复杂度看上去是O(n^2),但是满足要求的组合数并不多(不会证明。。),能过

代码(解法一):

#include<bits/stdc++.h>

const int N = 2e5+10;
using namespace std;
int A[N],ans[N];

inline bool check(int n,int m){return (n&m)==m;}

int main(){
   int T;
   scanf("%d",&T);
   while(T--){
      int n,m;
      scanf("%d%d",&n,&m);
      for(int i=1;i<=n;i++){
         scanf("%d",&A[i]);
         ans[i] = A[i];
      }for(int d=1;d<n;d++)if(check(m+d-1,d))
      for(int i=d+1;i<=n;i++)ans[i] ^= A[i-d];
      for(int i=1;i<=n;i++)printf("%d%c",ans[i],i<n?' ':'\n');
   }return 0;
}


解法二:

思路来源:点击打开博客

打表的时候很容易发现运算规则:


多推几轮发现会两两相抵,可以得到式子:


那么总复杂度为O(n*log(n))


代码(解法二):

#include<bits/stdc++.h>

const int N = 2e5+10;
using namespace std;

int dp[N];

int main()
{
   int T,n,m;
   scanf("%d",&T);
   while(T--){
      scanf("%d%d",&n,&m);
      for(int i=0;i<n;i++)scanf("%d",&dp[i]);
      int k = 1 , ed = min(m+1,n);
      while(k<ed){
         if(k&m)for(int i=k;i<n;i++)dp[i]^=dp[i-k];
         k<<=1;
      }for(int i=0;i<n;i++)printf("%d%c",dp[i],i<n-1?' ':'\n');
   }return 0;
}


阅读更多

没有更多推荐了,返回首页