解题报告:HDU_6185 Covering (轮廓线DP+高斯消元+矩阵快速幂)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_32570675/article/details/77816353

题目链接

题意:

给一个4*n的表格,你有两种矩阵(1*2),(2*1),询问放满的方案数。

n<=1e9


思路:

显然公式应该是一个线性递推方程,知道后可以用矩阵快速幂在O( log(n) * m^3 )求得答案(m为方程的项数)

为了求这个方程,我们可以用轮廓线DP求的方程的前k项

然后假设一个k>m,用高斯消元求k*k的矩阵的秩,从而求得m

再用高斯消元求得方程即可

求的方程为


代码:

#include<bits/stdc++.h>

using namespace std;

const int mod = 1e9+7;



void init(){
   int dp[100][16]={0};
   dp[1][0]=dp[1][3]=dp[1][6]=dp[1][12]=dp[1][15]=1;
   for(int x=2;x<=16;x++){
      for(int i=0;i<16;i++){
         dp[x][i] += dp[x-1][i^15];
         for(int j=0;j<3;j++){
            if((i&(1<<j))&&(i&(1<<(j+1)))){
               int t = i^(1<<j)^(1<<(j+1));
               dp[x][i] += dp[x-1][t^15];
               //if(x==2)printf("%d is from %d\n",i,i^(1<<j)^(1<<(j+1)));
            }
         }//printf("dp[%d][%d]--->%d\n",x,i,dp[x][i]);
      }dp[x][15]+=dp[x-1][15];
      printf("dp[%d]--->%d\n",x,dp[x][15]);
   }
}


namespace fast_Matrix{

int n=4;
const int MAX_E = 4;

inline void debug(long long a[MAX_E][MAX_E]){
    for(int i=0;i<n;i++){
        for(int j=0;j<n;j++){
            printf("%I64d%c",a[i][j],j!=n-1?' ':'\n');
        }
    }printf("\n");
}

long long ans[5]={1,1,5,11,36};

long long fast_mat(long long y)
{

long long tmp[MAX_E][MAX_E]={0};
long long mut[MAX_E][MAX_E]={
1,5,1,mod-1,
1,0,0,0,
0,1,0,0,
0,0,1,0,
};
long long res[MAX_E][MAX_E]={0};

for(int i=0;i<n;i++){
    res[i][i] = 1;
}


    while(y){
        if(y & 1){
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++)
                    tmp[i][j] = res[i][j];
            memset(res,0,sizeof(res));
            for(int i = 0; i < n; i++)
                for(int j = 0; j < n; j++)if(tmp[i][j])
                    for(int k = 0; k < n; k++)
                        res[i][k] = (res[i][k] + tmp[i][j] * mut[j][k])%mod ;
        }

        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)
                tmp[i][j] = mut[i][j];
        memset(mut,0,sizeof(mut));
        for(int i = 0; i < n; i++)
            for(int j = 0; j < n; j++)if(tmp[i][j])
                for(int k = 0; k < n; k++)
                    mut[i][k] = (mut[i][k] + tmp[i][j] * tmp[j][k])%mod ;
        y >>= 1;
    }
    long long val = 0;
    for(int i=0;i<n;i++)val = (val+res[0][i]*ans[n-i-1])%mod;
    return val;
}

}
using namespace fast_Matrix;

int main()
{
   init();
   long long t;
   while(scanf("%lld",&t)==1){
      if(t>=3)printf("%lld\n",fast_mat(t-3));
      else printf("%lld\n",ans[t]);
   }return 0;
}






阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页