Windows本地搭建Spark开发环境

作者:翁松秀


Windows系统下搭建Spark开发环境三步曲,简单粗暴,走你┏ (゜ω゜)=☞
[TOC]

Step1:安装Spark

到官网http://spark.apache.org/downloads.html选择相应版本,下载安装包。我这里下的是2.1.3版本,后面安装的Hadoop版本需要跟Spark版本对应。下载后找个合适的文件夹解压即可。我是新建了一个home文件夹,底下放了三个文件夹,分别是spark, hadoop, scala。
这里写图片描述
解压之后配置环境变量,将Spark底下的bin文件所在的目录添加到环境变量的Path变量中,后面Hadoop也一样。
这里写图片描述
然后打开cmd进行测试,输入spark-shell,如果出现如下的”Spark”说明安装成功。
这里写图片描述
OK, Welcome to Spark!

Step2: 安装Hadoop

http://mirrors.hust.edu.cn/apache/hadoop/common/下载相应版本的Hadoop安装包,我下的是2.7.7。具体的Spark和Hadoop版本对应可以到网上查,Spark和Hadoop版本不一致可能会导致出问题。
这里写图片描述
将下载好的安装好进行解压,然后将Hadoop底下的bin目录配置到Path变量中。
为了防止运行程序的时候出现nullpoint异常,到github下载hadoop.dll和winutils.exe 下载地址:https://github.com/steveloughran/winutils
找到对应的hadoop版本,然后进入bin目录下,下载hadoop.dll和winutils.exe, 然后复制到所安装hadoop目录下。
到官网https://www.scala-lang.org/download/下载镜像,然后安装即可。一般默认会自动配置好环境变量。安装好之后打开cmd测试,输入scala,如果出现以下内容则安装成功。
这里写图片描述
如果没有成功,检查一下Path环境变量,如果安装之后没有自动配置,则手动配置,参照Spark的环境配置。

Step3: 安装IDEA

Spark开发有两种方式,一种是用内置的spark-shell,另一种是独立应用开发,独立应用开发支持的语言有Java、Scala、Python和R语言。如果采用Java语言进行Spark开发,需要配置Maven,最新版的Eclipse和IntelliJ都内置Maven,所以采用Eclipse和IntelliJ来开发Spark是比较方便的。

IntelliJ安装参考教程
https://blog.csdn.net/qq_35246620/article/details/61200815

Eclipse安装参考教程
https://jingyan.baidu.com/article/d7130635194f1513fcf47557.html

### 回答1Windows本地Spark Streaming开发环境搭建及简单实例: 1. 首先需要安装Java JDK和Scala,可以在官网上下载对应版本的安装包进行安装2. 下载Spark的二进制包,解压到本地目录。 3. 配置环境变量,将Spark的bin目录添加到PATH中。 4.本地启动Spark集群,可以使用以下命令: ``` spark-submit --class org.apache.spark.examples.streaming.NetworkWordCount --master local[2] %SPARK_HOME%\examples\jars\spark-examples_2.11-2.4.0.jar localhost 9999 ``` 这个命令会启动一个本地Spark集群,并运行一个简单的Spark Streaming应用程序,它会从本地的9999端口接收数据,并对数据进行实时计算。 5. 在另一个命令行窗口中,使用以下命令向Spark Streaming应用程序发送数据: ``` nc -lk 9999 ``` 这个命令会启动一个本地的Netcat服务器,它会将输入的数据发送到9999端口。 6.Spark Streaming应用程序的控制台输出中,可以看到实时计算的结果。 以上就是在Windows本地搭建Spark Streaming开发环境及简单实例的步骤。 ### 回答2搭建windows本地Spark Streaming开发环境需要准备以下几个步骤: 一、安装Java 需要先安装Java作为Spark的运行环境,推荐安装Java8及以上的版本,可以通过官方网站下载安装包。 二、安装Spark 官方网站提供了Spark的下载地址,选择合适的版本进行下载,并解压缩到本地硬盘上。 三、安装Python 需要安装Python来运行Spark Streaming的示例程序,如果已经安装了Anaconda,则可以直接使用。 四、安装PySpark PySparkSpark的Python版,需要用pip安装安装命令: pip install pyspark 搭建本地开发环境之后,可以编写Spark Streaming的简单示例程序。 首先,需要导入相应的库: from pyspark.streaming import StreamingContext from pyspark import SparkContext 接下来,定义StreamingContext,设置批次时间,Spark Streaming的数据输入源等: sc = SparkContext(appName="PythonStreamingQueueStream") ssc = StreamingContext(sc, 1) rddQueue = [] inputStream = ssc.queueStream(rddQueue) 接下来,可以定义数据处理函数,并对输入源进行处理: def process(time, rdd): print("========= %s =========" % str(time)) try: if not rdd.isEmpty(): count = rdd.count() print("Word count in this batch: ", count) except Exception as e: print(e) inputStream.foreachRDD(process) 最后,需要启动StreamingContext,并将输入源写入队列: ssc.start() for i in range(5): rddQueue.append(sc.parallelize(["hello world"] * 10)) time.sleep(1) ssc.stop(stopSparkContext=True, stopGraceFully=True) 以上就是简单的Spark Streaming示例程序,可以通过这个示例进一步了解Spark Streaming的开发环境搭建和基本的使用。 ### 回答3Spark是一个快速、通用和可扩展的计算引擎,支持在线数据处理。Spark Streaming是Spark生态系统中的一个组件,允许对实时数据进行流式处理和分析。在本地环境下进行Spark Streaming开发需要进行如下步骤: 1. 安装Java JDK和Scala环境 Spark需要Java JDK和Scala环境来运行。可以从Oracle官方网站下载Java JDK,在Scala官方网站下载Scala环境。 2. 下载Spark并解压缩 从Spark官方网站下载Spark,并解压缩到本地目录。 3. 配置环境变量 在环境变量中配置SPARK_HOME、JAVA_HOME、SCALA_HOME和PATH变量,以便在命令行中启动Spark。 4. 编写Spark Streaming应用程序 可以使用Scala编写Spark Streaming应用程序。在Spark Streaming中,可以使用DStreams(离散流)来处理数据。 5. 运行Spark Streaming应用程序 使用命令行启动Spark Streaming应用程序,可以使用Spark submit命令。例如,可以使用以下命令启动应用程序: ``` $SPARK_HOME/bin/spark-submit --class com.example.MyApp myapp.jar ``` 其中“com.example.MyApp”是程序入口类,myapp.jar是打包后的应用程序包。 简单实例: 以下是使用Spark Streaming进行单词计数的示例: ```scala import org.apache.spark._ import org.apache.spark.streaming._ object WordCount { def main(args: Array[String]) { val conf = new SparkConf().setAppName("WordCount") val ssc = new StreamingContext(conf, Seconds(1)) val lines = ssc.socketTextStream("localhost", 9999) val words = lines.flatMap(_.split(" ")) val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _) wordCounts.print() ssc.start() ssc.awaitTermination() } } ``` 该应用程序从本地套接字上读取数据流,并计算每个单词出现的次数。在命令行中可以使用以下命令启动该应用程序: ``` $SPARK_HOME/bin/spark-submit --class WordCount \ --master local[2] wordcount.jar localhost 9999 ``` 其中,--master local[2] 指定使用本地模式,并使用2个CPU核心。localhost 9999是要从上面读取数据的本地套接字。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

翁松秀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值