Python气象数据处理与绘图:泰勒图

泰勒图绘制的核心思想是设计一个只有第一象限的极坐标,并将方差,相关系数进行捆绑,通过转化为极坐标系坐标进行绘制。为了实现泰勒图的绘制,设计了两个函数:

set_tayloraxes(fig, location=111) 
plot_taylor(axes, refsample, sample, args, *kwargs)

set_tayloraxes()函数用于建立一个泰勒图的坐标系,这个自定义函数一般情况下不建议修改,每一个参数都是经过多次调试得到的,很可能牵一发动全身。因此,将绘图部分的独立成为了plot_taylor函数(),这部分函数较为简单,目的就是将需要绘图的数据,转换为极坐标系坐标,通过plot函数将散点打在泰勒图上,这个函数模块较为简单,可以根据自己的输入数据情况进行调整。

下面直接给出两个函数的完整代码:

from matplotlib.projections import PolarAxes
from mpl_toolkits.axisartist import floating_axes
from mpl_toolkits.axisartist import grid_finder
import numpy as np

def set_tayloraxes(fig, location=111):
    trans = PolarAxes.PolarTransform()
    r1_locs = np.hstack((np.arange(1,10)/10.0,[0.95,0.99]))
    t1_locs = np.arccos(r1_locs)        
    gl1 = grid_finder.FixedLocator(t1_locs)    
    tf1 = grid_finder.DictFormatter(dict(zip(tlocs, map(str,rlocs))))
    r2_locs = np.arange(0,2,0.25)
    r2_labels = ['0 ', '0.25 ', '0.50 ', '0.75 ', 'REF ', '1.25 ', '1.50 ', '1.75 ']
    gl2 = grid_finder.FixedLocator(r2_locs)
    tf2 = grid_finder.DictFormatter(dict(zip(r2_locs, map(str,r2_labels))))
    ghelper = floating_axes.GridHelperCurveLinear(tr,extremes=(0,np.pi/2,0,1.75),
                                                  grid_locator1=gl1,tick_formatter1=tf1,
                                                  grid_locator2=gl2,tick_formatter2=tf2)
    ax = floating_axes.FloatingSubplot(fig, location, grid_helper=ghelper)
    fig.add_subplot(ax)
    ax.axis["top"].set_axis_direction("bottom")  
    ax.axis["top"].toggle(ticklabels=True, label=True)
    ax.axis["top"].major_ticklabels.set_axis_direction("top")
    ax.axis["top"].label.set_axis_direction("top")
    ax.axis["top"].label.set_text("Correlation")
    ax.axis["left"].set_axis_direction("bottom") 
    ax.axis["left"].label.set_text("Standard deviation")
    ax.axis["right"].set_axis_direction("top")   
    ax.axis["right"].toggle(ticklabels=True)
    ax.axis["right"].major_ticklabels.set_axis_direction("left")
    ax.axis["bottom"].set_visible(False)         
    ax.grid()
    polar_ax = ax.get_aux_axes(trans)   
    t = np.linspace(0,np.pi/2)
    r = np.zeros_like(t) + 1
    polar_ax.plot(t,r,'k--')
    polar_ax.text(np.pi/2+0.042,1.03, " 1.00", size=10.5,ha="right", va="top",
                  bbox=dict(boxstyle="square",ec='w',fc='w'))
return polar_ax

def plot_taylor(axes, refsample, sample, *args, **kwargs):
    std = np.std(sample)
    corr = np.corrcoef(refsample, sample) 
    theta = np.arccos(corr[0,1])
    t,r = theta,std
    d = axes.plot(t,r, *args, **kwargs) 
return d

下面介绍下函数的具体用法:

setup_axes(fig, rect=111)

输入:

fig:需要绘图的figure

rect:图的位置,如111为1行1列第一个,122为1行2列第2个

输出:

polar_ax:泰勒坐标系

plot_taylor(axes, refsample, sample, *args, **kwargs)

输入:

axes : setup_axes返回的泰勒坐标系

refsample :参照样本

sample :评估样本

args, *kwargs :plt.plot()函数的相关参数,设置点的颜色,形状等等。

下面给出示例:

x = np.linspace(0,10*np.pi,100)data = np.sin(x)          

在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值