论文翻译
。。
s_tatic_
hfnu,shiep
展开
-
Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory
Emotional Chatting Machine: Emotional Conversation Generation with Internal and External Memory摘要情感的感知和表达是对话系统或者会话代理成功的关键因素。然而,到目前为止这个问题还没有在大规模会话生成中研究。在本文中,我们提出情感聊天机(Emotional Chatting Maching,ECM),它可以根据内容(相关性和语法)和情感(情感一致性)来生成适当的回复。据我们所知,这是第一项在大规模会话生原创 2020-06-17 19:07:58 · 775 阅读 · 1 评论 -
顺序匹配网络:基于检索的聊天机器人中多回合响应选择的新架构
3 顺序匹配网络(Sequential Matching Network)3.1 问题形式假定,我们有一个数据集D={(yi,si,ri)}i=1N\mathcal{D}=\left\{\left(y_{i}, s_{i}, r_{i}\right)\right\}_{i=1}^{N}D={(yi,si,ri)}i=1N,其中si=ui,1,…,ui,nis_i={u_i,1,\ldots,u_{i,n_i}}si=ui,1,…,ui,ni表示具有{ui,k}k=1ni\left\{u原创 2020-06-11 23:20:06 · 506 阅读 · 0 评论 -
Introduction to Graph Neural Network翻译-第六章 图循环网络
还有一种趋势是在传播步骤中使用来自rnn的门机制,如GRU [Cho et al., 2014]或LSTM [Hochreiter and Schmidhuber, 1997],以减少普通GNN模型的限制,提高图上长期信息传播的有效性。6.1 GATED GRAPH NEURAL NETWORKSLi等人[2016]提出在传播步骤中使用门循环单元(GRU)的GGNN。它将递归神经网络展开固定数量的TTT步,并随时间反向传播以计算梯度。具体地说,传播模型的基本递归是:avt=AvT[h1t−1…hN原创 2020-05-29 12:56:31 · 833 阅读 · 0 评论 -
Introduction to Graph Neural Network翻译-第五章 图卷积网络
5. 图卷积网络在本章中,我们将讨论图卷积网络(GCNs),其目的是将卷积推广到图域。由于卷积神经网络(CNNs)在深度学习领域取得了巨大的成功,因此在图上定义卷积运算是非常直观的。在这个方向上的进展通常分为频谱方法和空间方法。由于在每个方向上都有很大的变化,因此本章仅列出几个经典模型。5.1 频谱方法频谱方法使用图的频谱表示形式。在本节中,我们将讨论四种经典模型(Spectral Network、ChebNet、GCN和AGCN)。5.1.1 频谱网络(SPECTRAL NETWORK)B原创 2020-05-22 11:18:05 · 870 阅读 · 0 评论 -
Introduction to Graph Neural Network翻译-第四章Vanilla Graph Neural Networks
4. Vanilla Graph Neural Networks在本节中,我们将描述Scarselli等人提出的Vanilla GNN[2009]。我们还列出了Vanilla GNN在表示能力和训练效率方面的局限性。在本章之后,我们将讨论Vanilla GNN模型的几种变体。4.1 介绍GNN的概念最早是在Gori等人[2005],Scarselli等 [2004,2009]提出的。为...原创 2020-04-30 10:15:33 · 1106 阅读 · 0 评论 -
Introduction to Graph Neural Network翻译-第二章数学与图基础
2. 数学与图基础2.1 线性代数线性代数的语言和概念在计算机科学的许多领域都得到了广泛的应用,机器学习也不例外。对机器学习的良好理解是建立在对线性代数的透彻理解的基础上的。在这一节中,我们将简要回顾线性代数中的一些重要概念和计算,这对于理解本书的其余部分是必要的。在这一节中,我们将回顾线性代数中的一些基本概念和计算,这对于理解本书的其余部分是必要的。2.1.1 基本概念标量: 一个数...原创 2020-04-30 10:13:33 · 613 阅读 · 6 评论 -
论文翻译:常识性道德决策的计算模型
A Computational Model of Commonsense Moral Decision Making摘要我们介绍了一种通过学习和归纳人类道德判断来构建道德自主车辆的计算模型。我们借鉴了一个认知启发的模型,说明人们和年幼的孩子是如何从稀疏和嘈杂的数据中学习道德理论的,并将不同群体中不同人的观察结果整合在一起。自动驾驶汽车的道德学习问题被描述为学习如何使用效用演算来权衡困境的不同特...翻译 2020-02-22 23:24:47 · 1352 阅读 · 0 评论 -
论文翻译:道德判断模型中的伦理和统计考虑
Ethical and Statistical Considerations in Models of Moral Judgments摘要这项工作扩展了道德决策计算模型的最新进展,通过使用数学和哲学理论来建议对最新技术的适应。它展示了模型假设的重要性,并在建模伦理原则时考虑了正态分布的替代方案。我们展示了如何将伦理理论、功利主义和道义论嵌入到信息先验分布中。我们继续扩大现有技术水平,以考虑超出...翻译 2020-02-21 23:40:56 · 3164 阅读 · 0 评论 -
论文翻译:Attention is all you need
Attention is all you need摘要主要的序列转换模型基于复杂的递归或卷积神经网络,包括编码器和解码器。性能最好的模型还通过注意力机制连接编码器和解码器。我们提出了一种新的简单的网络体系结构Transformer,它完全基于注意力机制,完全不需要重复和卷积。在两个机器翻译任务上的实验表明,这些模型在质量上更优越,同时更具并行性,需要的训练时间明显减少。我们的模型在2014年W...原创 2020-02-20 15:10:30 · 629 阅读 · 1 评论 -
论文翻译:BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
BERT: Pre-training of Deep Bidirectional Transformers for Language UnderstandingBERT:用于语言理解的深度双向变换器的预训练摘要我们引入了一个新的语言表示模型BERT,它代表了来自Transformers的双向编码器表示。与最近的语言表示模型不同(Peters等人,2018a; Radford等人,2018),...翻译 2020-02-18 16:52:55 · 1280 阅读 · 0 评论