快速选择排序(quickselect)--基于quicksort

//思想依然是:递归
//关键:寻找枢纽元
//方法:三值中值
//问题,要是left==right时,如何用快速排序?该程序结合了插入排序
//在快速排序的基础上,进行快速选择排序,最坏情况O(N2),最好情况O(N)
//选择第m个最小元,对应位置m-1
//对于快速选择排序,该算法节省的时间在于,它并没有对第m个数所在范围外的那一部分进行排序。。。。。
//因此,输出的排序后数组,后半部分并没有进行排序
//为了验证该想法,可以输出每次选取的枢纽元,进行比较
#include <iostream>
#include <string>
//#define cutoff 3
using namespace std;

int Median3(int* a, int left, int right);
int swap(int* t1, int* t2);
void Qsort(int* a, int m, int left, int right);
void InsertSort(int*a, int N);

//for循环外,首先记录待插入数a
//for循环中,依次遍历前面各数,大值存放在后面位置
//for循环结束后,i为a应该插入的位置(要么不变,要么插入最前面)
void InsertSort(int*a, int N)
{
	int i = 0, tmp = 0, j;
	for(j = 1; j < N; j++){
		tmp = a[j];
		for(i = j; i > 0&&a[i-1] > tmp; i--) //因为用到了a[i-1],所以i>0
			a[i]=a[i-1];
		a[i]=tmp;
	}
}

int k = 0;

//对数组首,中间,末尾,三个元素进行大小排序,最后得到left<center<right的关系
//最后将center元素作为枢纽元, 且放在倒数第二个位置
int Median3(int* a, int left, int right)
{	
	
	int center = (left+right)/2;
	if(a[left] > a[center])  swap(&a[left], &a[center]);
	if(a[left] > a[right])   swap(&a[left], &a[right]);
	if(a[center] > a[right]) swap(&a[center], &a[right]);
	
	swap(&a[center], &a[right-1]);    
	return a[right-1];

	//返回枢纽元
}


//i向后移动,j向前移动
//直到while循环不满足
//此时交换a[i]和a[j]使得,前半部分<pivot, 后半部分>pivot
void Qsort(int* a, int m, int left, int right)
{
	int i,j;
	int pivot;
	//if(left + cutoff <= right){
	if(left + 3 <= right){
		pivot=Median3(a,left, right);
		k++;  //为了看每次递归调用选取的枢纽元
		cout<<pivot<<' '<<k<<endl; //为了看每次递归调用选取的枢纽元
		i = left;
		j = right-1;
		for(;;){
			while(a[++i]<pivot){}
			while(a[--j]>pivot){}
			if(i < j){
				swap(&a[i],&a[j]);
			}
			else break;
			
		}
		swap(&a[i],&a[right-1]);//交换之后,枢纽元位于i,此时,a[i]作为中点
		//递归策略,a[i]为两部分的分界点
		//Qsort(a, left, i-1);
		//Qsort(a, i+1, right);
		//快速选择排序,相对于快速排序,只改变了以下四行内容以及函数的参数
		if(m <=i)
			Qsort(a, m ,left, i-1);
		else if(m > i)
			Qsort(a, m, i+1, right);
	}
	else//插入排序和快速排序结合,比始终用快速排序节省15%的时间,小数组(N<=20)插入排序效率高
		InsertSort(&a[left],right-left+1);

}


swap(int* t1, int* t2)
{
	int tmp = *t1;
	*t1 = *t2;
	*t2 = tmp;
}
int main()
{
	int arr[12]={3,4,5,6,24,13,26,1,2,27,38,15};
	//int N = sizeof(arr)/sizeof(int);
	int M = 3;
	Qsort(arr, M, 0, 11);
	for(int i = 0; i < 12; i++){
		cout<<arr[i]<<' ';
	}
	cout<<endl;
	cout<<"arr["<<M<<"-1]"<<"="<<arr[M-1]<<endl;
}

快速排序(QuickSort)是一种高效的排序算法,它的平均时间复杂度为O(nlogn)。它是通过将待排序数组分成两部分,其中一部分的所有元素都比另一部分的所有元素小,然后对这两部分分别进行递归排序,最终将整个数组排序。 以下是Java实现的快速排序代码: ```java public class QuickSort { public static void quickSort(int[] arr, int start, int end) { if (start < end) { int pivot = partition(arr, start, end); quickSort(arr, start, pivot - 1); quickSort(arr, pivot + 1, end); } } private static int partition(int[] arr, int start, int end) { int pivot = arr[end]; int i = start - 1; for (int j = start; j < end; j++) { if (arr[j] <= pivot) { i++; swap(arr, i, j); } } swap(arr, i + 1, end); return i + 1; } private static void swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; } public static void main(String[] args) { int[] arr = {5, 3, 8, 4, 2, 7, 1, 10}; quickSort(arr, 0, arr.length - 1); for (int i : arr) { System.out.print(i + " "); } } } ``` 在这个实现中,我们使用了递归来进行快速排序。首先,我们将数组分成两部分,然后对这两部分分别进行递归排序。在partition函数中,我们选择了数组的最后一个元素作为枢轴(pivot),并通过比较其他元素和枢轴的大小进行交换,将比枢轴小的元素放在枢轴的左边,比枢轴大的元素放在枢轴的右边。最后,我们将枢轴放在数组的正确位置上,并返回该位置。 在这个实现中,我们使用了swap函数来交换数组中的元素。我们也可以使用Java自带的Arrays.sort()函数来进行快速排序,它的实现也是基于快速排序算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值