题目描述
输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表。要求不能创建任何新的结点,只能调整树中结点指针的指向。 二叉搜索树性质:对于树中的每个节点X,它的左子树中所有关键字值小于X的关键字值,它的右子树所有关键字值大于X关键字值。 二叉搜索树
只完成了功能函数参考别人的思路写的一个版本:
利用了递归:递归是一个非常常用的方法,但是,一定要理清思路后再下手。思路形成后用代码的形式表现出来
TreeNode* Convert(TreeNode* root)
{
if(root==NULL)
return NULL;
if(root->left==NULL&&root->right==NULL)
return root;
TreeNode* left=Convert(root->left);
TreeNode* p=left;
//以下这个循环简直是神来之笔,这个循环最后将p转移到了左子树形成的双向链表的尾部,便于我的root插入双向链表
while(p!=NULL&&p->right!=NULL)
p=p->right;
//将跟节点插入排列好的左子树后面
if(left!=NULL){
p->right=root;
root->left=p;
}
TreeNode* right=Convert(root->right);
//左子树和右子树的区别在于:右子树,直接将最小的点和root节点链接起来就ok,即少了那个while循环
if(right!=NULL){
right->left=root;
root->right=right;
}
//这句返回也是很简洁,当left为空时,则返回root节点,因为是按照中序遍历才能得到排序的双向链表
return left!=NULL?left:root;
}
自己看书写的一个版本
//定义了一个无返回值的函数,完成排序双向链表的功能函数
//两个变量,分别是当前节点,以及排序链表的最后一个节点
void ConvertNode(TreeNode* pNode, TreeNode** pLastNodeInList)
{ //递归条件的判断
if(pNode==NULL)
return;
//新建当前节点
TreeNode* pCurrent=pNode;
if(pCurrent->left!=NULL)
ConvertNode(pCurrent->left,pLastNodeInList);
//以下三句是将pCurrent插入链表最后,中间有个判断
pCurrent->left=*pLastNodeInList;
if((*pLastNodeInList)!=NULL)
(*pLastNodeInList)->right=pCurrent;
//插入后,当前的新节点就作为链表最后一个节点
(*pLastNodeInList)=pCurrent;
//将右节点插入的判断
if(pCurrent->right!=NULL)
ConvertNode(pCurrent->right,pLastNodeInList);
}
TreeNode* Convert(TreeNode* pRootofTree)
{
//pLastNodeList用来指向已转换好的链表的最后一个节点
TreeNode* pLastNodeInList=NULL;
//需要新建一个函数完成相应的功能,排序功能
ConvertNode(pRootofTree, &pLastNodeInList);
TreeNode* HeadofList=pLastNodeInList;
//while循环只是为了能够返回双向链表的头部,并且最后返回
while(HeadofList!=NULL&&HeadofList->left!=NULL){
HeadofList= HeadofList->left;
}
return HeadofList;
}