隐私计算或成趋势?政策资本双BUFF

隐私计算或成趋势?政策资本双BUFF

之前介绍了隐私计算是什么?有什么作用?

来源:大数据

01 政策扶持

技术产业的发展离不开政策的扶持。2018年5月生效的《通用数据保护法案》(GDPR)被称为欧盟“史上最严”条例。该法案除了引入巨额的罚款措施之外,还明确了数据保护的技术效果。

Google、Facebook等都收到了巨额罚单,多家国际集团公司面临隐私监管机构提起的诉讼。各企业纷纷更新隐私政策,对隐私保护的重视程度达到了史无前例的高度

我国也相继出台了《中华人民共和国网络安全法》《信息安全技术个人信息安全规范》及其相关行业应用的国家技术标准,明确了企业在收集、保存和使用非公开隐私数据时所需要达到的技术效果及建议使用的标准化技术手段

2019年发布的《数据安全管理办法》更是从数据角度出发,确立数据分级分类管理以及风险评估、检测预警和应急处置等数据安全管理各项基本制度,为市场上从事数据活动的机构提供了一个相对公平、公开的竞争环境。2020年1月生效的《中华人民共和国密码法》从法律层面申明了密码技术的重要性。

政策法规的陆续生效规范了基于隐私数据的商业探索,正积极推动隐私保护从宣传口号向真正可以落实的技术进行转变,不仅为隐私数据属主的合法权益提供了保障,而且为挖掘高价值的数据信息提供了前所未有的商业机遇。
在这里插入图片描述

02 商业市场前景

除了存量业务的合法合规需求之外,隐私保护产业更大的价值在于促进创新数据业务的落地。在过去,由于法律法规的不明确以及技术能力的不足,大量数据形成数据孤岛,无法产生应有的数据价值。

在法律法规方面,原始数据一旦从企业流通出去,企业就失去了对数据的控制权,很难获知数据的实际使用情况,隐私数据存在被滥用的可能。在商业利益方面,数据作为企业资产之一,流通不可控会削弱企业的核心竞争力,可能还会打破自身的商业壁垒,甚至可能因为数据被滥用而面临法律问题以及巨额罚单。

因此,虽然很多企业积累了大量数据,但数据的商业应用面临种种限制,商业价值还远未被挖掘

发展隐私计算技术正是消除这些限制的关键,众多投资机构也敏锐地发现了隐私计算技术的商机。下文列出了部分以隐私保护为产品设计卖点的初创公司的融资数据,反映了全球资本市场对隐私保护产业市场前景的认可

  • Datavant

    使用隐私计算技术帮助生命科学和医疗机构安全连接数据的服务商

    2020年10月B轮融资4000万美元

  • Enveil

    技术的核心创新点是大范围实现同态加密,使大规模搜索、分析和计算加密数据成为可能

    2020年2月A轮融资1000万美元

  • Inpher

    基于多方安全计算和同态加密提供隐私保护的数据分析和机器学习产品

    2018年11月A轮融资1000万美元

  • OneTrust

    提供隐私管理程序,帮助公司遵守GDPR、《加州消费者隐私法》和其他数百项全球隐私法律

    2020年12月C轮融资3亿美元

  • 华控清交

    自主开发并推出了一系列基于多方安全计算的隐私计算技术,可以使多个非互信数据库在数据相互保密的前提下进行高效数据融合计算,实现数据“可用不可见、可控可计量”

    成立于2018年6月,成立不到一年已完成两轮融资,估值超过12亿元。2021年10月B轮融资的投后估值超40亿元

  • 翼方健数

    以医疗行业为切入点,专注于隐私安全计算领域的大数据和人工智能

    2020年7月完成数千万美元B轮融资。2021年7月完成超过3亿元的B+轮融资

  • 锘崴科技

    旨在打造一流的大数据隐私云计算平台,通过分离数据的所有权、管理权和使用权,充分实现数据安全共享和快捷有效的大数据流转

    2020年初完成A轮数千万元人民币融资。2021年8月完成亿元级B轮融资

  • 洞见科技

    以安全多方计算、联邦学习、区块链为核心技术的数据智能科技服务商

    2020年8月完成天使轮融资约2000万元。2021年3月完成数千万元的Pre-A轮融资

近年来,众多国内外科技巨头也一直在布局隐私计算产业,微软、谷歌、蚂蚁金服、腾讯、百度等都已推出各自的基于隐私计算的相关产品。而且,头部互联网公司凭借数据优势和规模效益加快研发,金融、通信、区块链公司也在陆续规划入场,巨大的市场正在形成。

03 商业研究机构的认同

近年来,商业研究机构在关注数据经济的同时也关注到了隐私计算技术的价值和科技趋势,纷纷提出隐私计算技术是战略趋势,应发展和利用隐私计算技术解决数据孤岛问题,释放数据价值。

1、德勤与世界经济论坛

2019年9月,德勤(Deloitte)在世界经济论坛上发布白皮书“The Next Generation of Data-Sharing in Financial Services: Using Privacy Enhancing Techniques to Unlock New Value”,提出隐私计算是金融服务领域的下一代数据分享方式,应该使用隐私计算技术来解决数据孤岛问题、释放数据价值。

报告举例说明了同态加密、零知识证明等隐私计算技术如何在金融服务中实现隐私保护,并认为隐私计算技术可以改变数据共享现状,让金融机构以客户、监管机构和整个社会都能接受的方式解决目前最紧迫的问题,并创造价值。

2、Gartner

2020年10月,Gartner(全球最具权威的IT研究与顾问咨询公司之一)发布了2021年需要深挖的9项重要战略科技趋势,其中一项包含隐私增强计算Privacy-Enhancing Computation)。

与Gartner前一年发布的2020年十大重要战略趋势比较可以发现,Gartner在持续关注数据和隐私,并把隐私增强计算作为一项新的战略趋势单独提出,足见隐私计算在当今科技发展中的前沿性和重要性。

Gartner公司认为,到2025年,一半以上大型组织将实施隐私增强计算,以在不受信任的环境和多方数据分析用例中处理数据。而Gartner所称的隐私增强计算也就是我们所说的隐私计算。

3、毕马威

2021年4月,毕马威与微众银行联合推出了“深潜数据蓝海:2021隐私计算行业研究报告”,在报告中分析得出隐私计算受到大数据融合应用和隐私保护的双重需求驱动,也是目前国内外政策法规的必然要求,将撬动千亿级规模市场。隐私计算作为近年来兴起的面向隐私信息全生命周期保护的计算方法,将为数据安全共享带来根本性的转变。

### LVGL 中缓冲屏幕刷新的实现方法 在 LVGL 图形库中,缓冲是一种常见的技术用于减少屏幕刷新时的闪烁问题。以下是关于如何在 LVGL 中实现缓冲的具体说明: #### 缓冲区配置 为了启用缓冲功能,需要分配两个独立的内存区域作为显示缓冲区。这两个缓冲区通常位于 RAM 外部存储设备中。每个缓冲区应至少能够容纳整个屏幕的像素数据[^4]。 ```c // 定义两个缓冲区大小 (假设分辨率为 500x100, 使用 RGB565 格式) #define DISP_BUF_SIZE (500 * 100) uint8_t disp_buf_1[DISP_BUF_SIZE * sizeof(uint16_t)]; uint8_t disp_buf_2[DISP_BUF_SIZE * sizeof(uint16_t)]; static lv_disp_draw_buf_t draw_buf; lv_disp_draw_buf_init(&draw_buf, disp_buf_1, disp_buf_2, DISP_BUF_SIZE); ``` 上述代码片段展示了如何初始化两个缓冲区 `disp_buf_1` 和 `disp_buf_2` 并将其传递给 LVGL 的绘图缓冲结构体 `lv_disp_draw_buf_t`。这一步骤是设置缓冲的关键部分之一[^3]。 #### 显示驱动注册 接下来,需将初始化好的绘图缓冲区绑定到具体的显示器驱动程序中。此过程通过调用 `lv_disp_drv_register()` 来完。 ```c lv_disp_drv_t disp_drv; lv_disp_drv_init(&disp_drv); disp_drv.draw_buf = &draw_buf; // 配置其他必要的参数... disp_drv.flush_cb = my_display_flush_callback; lv_disp_t *disp = lv_disp_drv_register(&disp_drv); ``` 在此过程中,`flush_cb` 是一个重要的回调函数指针,它定义了如何将缓冲区中的内容传输到物理显示屏上[^5]。 #### 刷新机制 当所有绘制任务完后,LVGL 自动切换当前活动缓冲区,并触发相应的刷新操作。具体来说,如果前一帧的数据已经写入第一个缓冲区,则下一帧会写入第二个缓冲区;反之亦然。这种交替方式有效避免了直接更新可见缓冲区带来的视觉干扰现象[^1]。 此外,在某些情况下还可以利用硬件加速来进一步优化性能表现。例如借助 DMA 控制器完从内存到 LCD 控制器寄存器之间的数据搬运工作从而减轻 CPU 负载。 #### 性能考量 需要注意的是,虽然采用缓冲方案能够在大多数应用场景下提供更流畅的画面过渡效果,但在涉及复杂图形渲染者高频率动态变化的情况下可能会增加系统的计算负担。因此合理规划缓冲尺寸以及选择合适的颜色深度对于平衡画质与效率至关重要。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值