51nod 1076 2条不相交的路径 tarjan算法

5 篇文章 0 订阅
1 篇文章 0 订阅


基准时间限制:1 秒 空间限制:131072 KB 分值: 40  难度:4级算法题
 收藏
 关注
给出一个无向图G的顶点V和边E。进行Q次查询,查询从G的某个顶点V[s]到另一个顶点V[t],是否存在2条不相交的路径。(两条路径不经过相同的边)
(注,无向图中不存在重边,也就是说确定起点和终点,他们之间最多只有1条路)
Input
第1行:2个数M N,中间用空格分开,M是顶点的数量,N是边的数量。(2 <= M <= 25000, 1 <= N <= 50000)
第2 - N + 1行,每行2个数,中间用空格分隔,分别是N条边的起点和终点的编号。例如2 4表示起点为2,终点为4,由于是无向图,所以从4到2也是可行的路径。
第N + 2行,一个数Q,表示后面将进行Q次查询。(1 <= Q <= 50000)
第N + 3 - N + 2 + Q行,每行2个数s, t,中间用空格分隔,表示查询的起点和终点。
Output
共Q行,如果从s到t存在2条不相交的路径则输出Yes,否则输出No。
Input示例
4 4
1 2
2 3
1 3
1 4
5
1 2
2 3
3 1
2 4
1 4
Output示例
Yes
Yes
Yes
No
No


算法介绍

编辑
如果两个顶点可以相互通达,则称两个顶点 强连通(strongly connected)。如果 有向图G的每两个顶点都 强连通,称G是一个 强连通图。有向图的极大强连通子图,称为 强连通分量(strongly connected components)。
下图中,子图{1,2,3,4}为一个 强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
Tarjan算法是用来求有向图的强连通分量的。求有向图的强连通分量的Tarjan算法是以其发明者Robert Tarjan命名的。Robert Tarjan还发明了求 双连通分量的Tarjan算法。
Tarjan算法是基于对图 深度优先搜索的算法,每个强连通分量为搜索树中的一棵子树。搜索时,把当前搜索树中未处理的 节点加入一个 堆栈,回溯时可以判断栈顶到栈中的节点是否为一个强连通分量。
定义 DFN(u)为节点u搜索的次序编号( 时间戳),Low(u)为u或u的子树能够追溯到的最早的栈中节点的次序号。
当DFN(u)=Low(u)时,以u为根的搜索子树上所有节点是一个 强连通分量
接下来是对算法流程的演示。
从节点1开始DFS,把 遍历到的节点加入栈中。搜索到节点u=6时, DFN[6]=LOW[6],找到了一个强连通分量。退栈到u=v为止,{6}为一个强连通分量。
返回节点5,发现DFN[5]=LOW[5],退栈后{5}为一个 强连通分量
返回节点3,继续搜索到节点4,把4加入 堆栈。发现节点4向节点1有后向边,节点1还在栈中,所以LOW[4]=1。节点6已经出栈,(4,6)是横叉边,返回3,(3,4)为树枝边,所以LOW[3]=LOW[4]=1。
继续回到节点1,最后访问节点2。访问边(2,4),4还在栈中,所以LOW[2]=DFN[4]=5。返回1后,发现DFN[1]=LOW[1],把栈中节点全部取出,组成一个 连通分量{1,3,4,2}。
至此,算法结束。经过该算法,求出了图中全部的三个 强连通分量{1,3,4,2},{5},{6}。
可以发现,运行Tarjan算法的过程中,每个顶点都被访问了一次,且只进出了一次 堆栈,每条边也只被访问了一次,所以该算法的 时间复杂度为O(N+M)。
以上摘自百度百科 ,个人觉得已经很详细了



主要用到的是tarjan算法tarjan算法是求连通量的两两到达的都属于一个联通分量。

这样的话,无向图内也通用。

之后在tarjan的连通分量里面 就能达到两两有两条不想交的路的效果了关于tarjan算法。

我卡在时间戳。之前认为是时间戳分类。之后自己敲了一个时间戳分类的代码。发现一些联通分量的时间戳在搜索过程中很难一致。

所以 ,我觉得精华部分是那个联通块的分类数组。把一个栈里面的连通分量用联通快的那个数组分开。用时间戳来把一个联通块从栈内分离出去。


#include <bits/stdc++.h>
using namespace std;
vector<int > d[50005];
stack<int > s;
int dfn[50005];
int low[50005];
int vtag[50005];
int b[50005];
int times;
void dfs(int t,int u)
{
    dfn[t]=low[t]=times++;
    s.push(t);
    vtag[t]=1;
    for(int i=0;i<d[t].size();i++)
    {
        if(!dfn[d[t][i]])
        {
            dfs(d[t][i],t);
            low[t]=min(low[t],low[d[t][i]]);
        }
        if(vtag[d[t][i]]&&d[t][i]!=u)
            low[t]=min(low[t],dfn[d[t][i]]);
    }
     if(low[t]==dfn[t])
     {
            while(s.top()!=t)
            {
                //cout<<s.top()<<' ';
                vtag[s.top()]=0;
                b[s.top()]=t;
                s.pop();
            }
            b[s.top()]=t;
            s.pop();
     }
}
int main()
{
    int n,m,q;
    while(cin>>n>>m)
    {
        memset(b,0,sizeof(b));
        memset(vtag,0,sizeof(vtag));
        while(!s.empty()) s.pop();
        times=1;
        int x,y;
        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&x,&y);
            d[x].push_back(y);
            d[y].push_back(x);
        }
        for(int i=1;i<=n;i++)
            if(!dfn[i])dfs(i,0);
        cin>>q;
        for(int i=0;i<q;i++)
        {
            scanf("%d%d",&x,&y);
            if(b[x]==b[y]) cout<<"Yes"<<endl;
            else cout<<"No"<<endl;
        }
    }
}






  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值