龟兔赛跑
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 17196 Accepted Submission(s): 6469
Problem Description
据说在很久很久以前,可怜的兔子经历了人生中最大的打击——赛跑输给乌龟后,心中郁闷,发誓要报仇雪恨,于是躲进了杭州下沙某农业园卧薪尝胆潜心修炼,终于练成了绝技,能够毫不休息得以恒定的速度(VR m/s)一直跑。兔子一直想找机会好好得教训一下乌龟,以雪前耻。
最近正值HDU举办50周年校庆,社会各大名流齐聚下沙,兔子也趁此机会向乌龟发起挑战。虽然乌龟深知获胜希望不大,不过迫于舆论压力,只能接受挑战。
比赛是设在一条笔直的道路上,长度为L米,规则很简单,谁先到达终点谁就算获胜。
无奈乌龟自从上次获胜以后,成了名龟,被一些八卦杂志称为“动物界的刘翔”,广告不断,手头也有了不少积蓄。为了能够再赢兔子,乌龟不惜花下血本买了最先进的武器——“"小飞鸽"牌电动车。这辆车在有电的情况下能够以VT1 m/s的速度“飞驰”,可惜电池容量有限,每次充满电最多只能行驶C米的距离,以后就只能用脚来蹬了,乌龟用脚蹬时的速度为VT2 m/s。更过分的是,乌龟竟然在跑道上修建了很多很多(N个)的供电站,供自己给电动车充电。其中,每次充电需要花费T秒钟的时间。当然,乌龟经过一个充电站的时候可以选择去或不去充电。
比赛马上开始了,兔子和带着充满电的电动车的乌龟并列站在起跑线上。你的任务就是写个程序,判断乌龟用最佳的方案进军时,能不能赢了一直以恒定速度奔跑的兔子。
Input
本题目包含多组测试,请处理到文件结束。每个测试包括四行:
第一行是一个整数L代表跑道的总长度
第二行包含三个整数N,C,T,分别表示充电站的个数,电动车冲满电以后能行驶的距离以及每次充电所需要的时间
第三行也是三个整数VR,VT1,VT2,分别表示兔子跑步的速度,乌龟开电动车的速度,乌龟脚蹬电动车的速度
第四行包含了N(N<=100)个整数p1,p2...pn,分别表示各个充电站离跑道起点的距离,其中0<p1<p2<...<pn<L
其中每个数都在32位整型范围之内。
Output
当乌龟有可能赢的时候输出一行 “What a pity rabbit!"。否则输出一行"Good job,rabbit!";
题目数据保证不会出现乌龟和兔子同时到达的情况。
Sample Input
100 3 20 5 5 8 2 10 40 60 100 3 60 5 5 8 2 10 40 60
Sample Output
Good job,rabbit! What a pity rabbit!
将起点和终点划分到N个加电站中去,这样一共有N+2点,用DP[i]表示到第i个加电站的最小耗费时间
那么在求DP[i]的时候,DP[0]...DP[i-1]已经求得,让j从0遍历到i-1,每一个j表示最后一次充电到i点,那么状态转移方程为
DP[i] = min(DP[j] + t(j, i)) //t(j, i)表示从j充完电一直到i点(中途没有充过电)
参考:http://acm.hdu.edu.cn/discuss/problem/post/reply.php?postid=13573&messageid=1&deep=0
#include<iostream> #include<cstdio> #include<algorithm> using namespace std; const double INF=0xfffff; int main() { int L,n,c,t,vr,vt1,vt2,p[102]; //p[i]表示到第i个加电站到起点的距离 double time,dp[102]; //dp[i]表示到第i个加电站的最小时间 while(cin>>L) //输入跑道长度 { cin>>n>>c>>t; //依次为加电站个数、电动车最大行驶距离、电动车充电时间 cin>>vr>>vt1>>vt2; //依次为兔子、电动车、乌龟用脚踏的速度 for(int i=1;i<=n;i++)cin>>p[i]; p[0]=0;p[n+1]=L; //把第0个加电站设为起点,长度为0;把第n+1个加电站设为终点,长度为L dp[0]=0; //起点到起点最小时间为0 for(int i=1;i<n+2;i++) { dp[i]=INF; //因为到第i个加电站最小时间未知所以赋值无穷大 for(int j=0;j<i;j++) { //如果第j个加电站到第i个加电站的距离大于电动车能行驶的最大距离 if(p[i]-p[j]>c)time=1.0*c/vt1+1.0*(p[i]-p[j]-c)/vt2; //电动车行驶时间加上脚踏时间 else time=1.0*(p[i]-p[j])/vt1; //否则为第j个加电站到第i个加电站的距离除以动车速度所得时间 time+=dp[j]; //加上到第j个加电站的最优时间 //j==0的话,即表明从起点出发,因为起点已经充满电了所以不需要加上电动车的充电时间 if(j>0)time+=t; //如果j>0加上电动车的充电时间 dp[i]=min(dp[i],time); //每次挑出到第i个加电站的最优时间 } } if(dp[n+1]<1.0*L/vr)printf("What a pity rabbit!\n"); else printf("Good job,rabbit!\n"); } return 0; }