63. Unique Paths II

Description

https://leetcode.com/problems/unique-paths-ii/

Solving Ideas

https://leetcode.com/problems/unique-paths-ii/solution/

动态规划:

State:
dp[i][j]: 从grid[0][0]grid[i][j]的路径数

Initial State:

  • dp[0][0] = 1
  • dp[i][0] = obstacleGrid[i][0] == 1 ? 0 : dp[i - 1][0] (i > 0)
  • dp[0][j] = obstacleGrid[0][j] == 1 ? 0 : dp[0][j - 1] (j > 0)

State Transition:

  • dp[i][j] = obstacleGrid[i][j] == 1 ? 0 : dp[i - 1][j] + dp[i][j - 1] (i > 0 && j > 0)

时间复杂度: O ( m ∗ n ) O(m*n) O(mn)
空间复杂度: O ( m ∗ n ) O(m*n) O(mn)

Solution
class Solution {
    public int uniquePathsWithObstacles(int[][] obstacleGrid) {
        if (obstacleGrid == null || obstacleGrid.length == 0
                || obstacleGrid[0].length == 0) return -1;

        if (obstacleGrid[0][0] == 1) return 0;
        
        int m = obstacleGrid.length, n = obstacleGrid[0].length;
        int[][] dp = new int[m][n];
        dp[0][0] = 1;
        
        for (int i = 1; i < m; i++) dp[i][0] = obstacleGrid[i][0] == 1 ? 0 : dp[i - 1][0];
        for (int j = 1; j < n; j++) dp[0][j] = obstacleGrid[0][j] == 1 ? 0 : dp[0][j - 1];
        
        for (int i = 1; i < m; i++) {
            for (int j = 1; j < n; j++) {
                dp[i][j] = obstacleGrid[i][j] == 1 ? 0 : dp[i - 1][j] + dp[i][j - 1];
            }
        }
        
        return dp[m - 1][n - 1];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值