Description
https://leetcode.com/problems/unique-paths-ii/
Solving Ideas
https://leetcode.com/problems/unique-paths-ii/solution/
动态规划:
State:
dp[i][j]
: 从grid[0][0]
到grid[i][j]
的路径数
Initial State:
dp[0][0] = 1
dp[i][0] = obstacleGrid[i][0] == 1 ? 0 : dp[i - 1][0] (i > 0)
dp[0][j] = obstacleGrid[0][j] == 1 ? 0 : dp[0][j - 1] (j > 0)
State Transition:
dp[i][j] = obstacleGrid[i][j] == 1 ? 0 : dp[i - 1][j] + dp[i][j - 1] (i > 0 && j > 0)
时间复杂度:
O
(
m
∗
n
)
O(m*n)
O(m∗n)
空间复杂度:
O
(
m
∗
n
)
O(m*n)
O(m∗n)
Solution
class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if (obstacleGrid == null || obstacleGrid.length == 0
|| obstacleGrid[0].length == 0) return -1;
if (obstacleGrid[0][0] == 1) return 0;
int m = obstacleGrid.length, n = obstacleGrid[0].length;
int[][] dp = new int[m][n];
dp[0][0] = 1;
for (int i = 1; i < m; i++) dp[i][0] = obstacleGrid[i][0] == 1 ? 0 : dp[i - 1][0];
for (int j = 1; j < n; j++) dp[0][j] = obstacleGrid[0][j] == 1 ? 0 : dp[0][j - 1];
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
dp[i][j] = obstacleGrid[i][j] == 1 ? 0 : dp[i - 1][j] + dp[i][j - 1];
}
}
return dp[m - 1][n - 1];
}
}