32. Longest Valid Parentheses

Description

https://leetcode.com/problems/longest-valid-parentheses/

Solving Ideas

https://leetcode.com/problems/longest-valid-parentheses/solution/

动态规划:

State:
dp[i]: 以第 i 个元素为结尾的最长有效子串的长度

Initial State:

  • dp[i] = 0

State Transition:

  • if s[i] = ‘)’ and s[i - 1] = ‘(’, i.e. string looks like “…()”:
    dp[i] = dp[i - 2] + 2 (i >= 2)

  • if s[i] = ‘)’ and s[i - 1]=’)’, i.e. string looks like “…))”:
    if s[i - dp[i - 1] - 1] = ‘(’ then
    dp[i] = dp[i-1] + 2 + dp[i - dp[i - 1] - 2] (i - dp[i-1] >= 2)

时间复杂度: O ( n ) O(n) O(n)
空间复杂度: O ( n ) O(n) O(n)

Solution
class Solution {
    public int longestValidParentheses(String s) {
        if (s == null || s.length() < 1) return 0;

        int maxans = 0;
        //dp[i] represent the length of the longest valid substring
        //ending at ith index.
        int[] dp = new int[s.length()];

        for (int i = 1; i < s.length(); i++) {
            if (s.charAt(i) == ')') {
                if (s.charAt(i - 1) == '(') {
                    dp[i] = (i >= 2 ? dp[i - 2] : 0) + 2;
                } else if (i - dp[i - 1] > 0 && s.charAt(i - dp[i - 1] - 1) == '(') {
                    dp[i] = dp[i - 1] + 2 + (i - dp[i - 1] >= 2 ? dp[i - dp[i - 1] - 2] : 0);
                }
                maxans = Math.max(maxans, dp[i]);
            }
        }
        return maxans;
    }
}
class Solution {
    public int longestValidParentheses(String s) {
        if (s == null || s.length() < 1) return 0;

        int maxans = 0;
        Stack<Integer> stack = new Stack<>();
        stack.push(-1);
        for (int i = 0; i < s.length(); i++) {
            if (s.charAt(i) == '(') {
                stack.push(i);
            } else {
                stack.pop();
                if (stack.empty()) stack.push(i);
                else maxans = Math.max(maxans, i - stack.peek());
            }
        }
        return maxans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值