深度学习
文章平均质量分 83
qq_32790593
这个作者很懒,什么都没留下…
展开
-
卷积原理(卷积,padding填充,步长,多通道卷积)
针对多通道矩阵,卷积核的通道数应该和输入数据的通道数相同,如下图所示,输入数据是三通道,卷积核也应该是三通道。三通道的卷积过程是相应通道的卷积核对相应通道的输入矩阵进行卷积,然后再将结果相加。的过程就是通过卷积核扫描输入矩阵的元素,将卷积核和扫描对应的元素相乘再相加,得到一个输出,通过不断地滑动,得到最后的输出矩阵。是中间元素参与运算的次数要远大于周围元素,尤其是当输入矩阵是高维时,差距会更大,因此在计算中我们会丢失掉一部分的边缘信息。如果输入矩阵的大小是n×n,卷积核的大小是f×f,则输出矩阵的大小为。转载 2024-01-09 15:16:53 · 462 阅读 · 0 评论 -
神经网络激活函数
转载网址:https://blog.csdn.net/qq_30815237/article/details/86700680 生物神经网络是人工神经网络的起源。然而,人工神经网络(ANNs)的工作机制与大脑的工作机制并不是十分的相似。不过在我们了解为什么把激活函数应用在人工神经网络中之前,了解一下激活函数与生物神经网络的关联依然是十分有用的。一个典型神经元的物理结构由细胞体、向其他神经元发送信息的轴突以及从其他神经元接受信号或信息的树突组成。 转载 2020-10-21 11:24:47 · 615 阅读 · 0 评论 -
深度学习--感受野解释
1.网址接收 https://zhuanlan.zhihu.com/p/23358015 2.卷积中感受野的定义 在神经网络中,感受野的定义是: 卷积神经网络的每一层输出的特征图(Feature ap)上的像素点在原图像上映射的区域大小。原创 2020-10-20 15:12:07 · 175 阅读 · 0 评论