括号匹配

括号配对问题

时间限制: 3000 ms  |  内存限制: 65535 KB
难度: 3
描述
现在,有一行括号序列,请你检查这行括号是否配对。
输入
第一行输入一个数N(0<N<=100),表示有N组测试数据。后面的N行输入多组输入数据,每组输入数据都是一个字符串S(S的长度小于10000,且S不是空串),测试数据组数少于5组。数据保证S中只含有"[","]","(",")"四种字符
输出
每组输入数据的输出占一行,如果该字符串中所含的括号是配对的,则输出Yes,如果不配对则输出No
样例输入
3
[(])
(])
([[]()])
样例输出
No
No

Yes


栈解决

#include <cstring>
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <stack>
using namespace std;
int main()
{
    int n;
    scanf("%d",&n);
    char c,t;
    c=getchar();
    while(n--)
    {
        stack<char>q;
        while((c=getchar())!='\n')
        {
            if(q.empty())
                q.push(c);
            else
            {
                t=q.top();
                if(t=='('&&c==')')
                    q.pop();
                else if(t=='['&&c==']')
                    q.pop();
                else
                    q.push(c);
            }
        }
        if(q.empty())
            cout<<"YES"<<endl;
        else
            cout<<"NO"<<endl;
    }
    return 0;
}



括号匹配(二)

时间限制: 1000 ms  |  内存限制: 65535 KB
难度: 6
描述
给你一个字符串,里面只包含"(",")","[","]"四种符号,请问你需要至少添加多少个括号才能使这些括号匹配起来。
如:
[]是匹配的
([])[]是匹配的
((]是不匹配的
([)]是不匹配的
输入
第一行输入一个正整数N,表示测试数据组数(N<=10)
每组测试数据都只有一行,是一个字符串S,S中只包含以上所说的四种字符,S的长度不超过100
输出
对于每组测试数据都输出一个正整数,表示最少需要添加的括号的数量。每组测试输出占一行
样例输入
4
[]
([])[]
((]
([)]
样例输出
0
0
3
2

定义dp[i][j],代表从i 到j 字符,出现了最多几个匹配(至少要添加的括号个数)

可以推出方程:

dp[i][j]=min(dp[i][j],dp[i][k],dp[k+1][j]));

但是:
中间串可能会出现与刚加入的字符相匹配的情况,所以需要更改一下变成:

dp[i][j]=min(dp[i][j],dp[i][k-1],dp[k+1,j-1));


#include <cstring>
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
char str[110];
int match(int i,int j)
{
    if(str[i]=='('&&str[j]==')')
    return 1;
    if(str[i]=='['&&str[j]==']')
    return 1;
    return 0;
}
int main()
{
    int n,c;
    scanf("%d",&c);
    int dp[110][110];
    getchar();
    while(c--)
    {

        scanf("%s",str);
       //getchar();
        n=strlen(str);
        memset(dp,0,sizeof(dp));
        for(int i=0;i<n;i++)
        {
            dp[i][i]=1;
        }
        for(int j=1;j<n;j++)
        {
            for(int i=0;i<j;i++)
            {
                dp[i][j]=dp[i][j-1]+1;
                for(int k=i;k<=j;k++)
                {
                    if(match(k,j))
                    dp[i][j]=min(dp[i][j],dp[i][k-1]+dp[k+1][j-1]);
                }
            }
        }
        cout<<dp[0][n-1]<<endl;
    }
    return 0;
}


摘自:http://blog.csdn.net/svitter/article/details/24877159

问题描述:假设表达式中允许有两种括号:圆括号和方括号,其嵌套的顺序随意,即CC或[([ ] [ ])]等为正确格式,[( ))或((()均为不正确的格式。检验括号是否匹配的方法可用“期待的紧迫程度”这个概念来描述。例如:考虑下列的括号序列:    [ ( [ ] [ ] ) ]    1 2 3 4 5 6 7 8 当计算机接受了第1个括号以后,他期待着与其匹配的第8个括号的出现,然而等来的却是第2个括号,此时第1个括号“[”只能暂时靠边,而迫切等待与第2个括号相匹配的 第7个括号“]”的出现,类似的,因只等来了第3个括号“[”,此时,其期待的紧迫程度较第2个括号更紧迫,则第2个括号只能靠边,让位于第3个括号,显然第3个括号的期待紧迫程度高于第2个括号,而第2个括号的期待紧迫程度高于第1个括号;在接受了第4个括号之后,第3个括号的期待得到了满足,消解之后,第2个括号的期待匹配就成了最急迫的任务了,…… ,依次类推。可见这个处理过程正好和栈的特点相吻合。 要求:设置一个栈,每读入一个括号,若是左括号,则作为一个新的更急迫的期待压入栈中,若是右括号,则或者是和当前栈顶的括号相匹配,或者是不合法的情况,输出“此串括号匹配不合法”。在初始和结束时,栈应该是空的。 测试数据:输入 #([ ]())#,结果“匹配”  输入 #[( )]#,结果“此串括号匹配不合法”  #为起始和结束标志。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值