mnist one layer

21 篇文章 0 订阅
13 篇文章 0 订阅
参考 文档http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
#load dataset
mnist=input_data.read_data_sets("MNIST_data/",one_hot=True)
x=tf.placeholder(tf.float32,[None,784])
y_=tf.placeholder("float",[None,10])
W=tf.Variable(tf.zeros([784,10]))
b=tf.Variable(tf.zeros([10]))
y=tf.nn.softmax(tf.matmul(x,W)+b)

#compute loss
cross_entropy=-tf.reduce_sum(y_*tf.log(y))

#梯度下降训练模型
train_step=tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))

#计算准确率
accuracy=tf.reduce_mean(tf.cast(correct_prediction,"float"))
y_=tf.placeholder("float",[None,10])

#初始化参数
init=tf.initialize_all_variables()
sess=tf.Session()sess.run(init)
#迭代1000次for i in range(1000): 
  batch_xs,batch_ys=mnist.train.next_batch(100) 
  sess.run(train_step,feed_dict={x:batch_xs,y_:batch_ys})
  print "the %d th step accuracy is :%f" %(i,sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels})

训练结果:准确率91%

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值