参考
文档http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html
import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
#load dataset
mnist=input_data.read_data_sets("MNIST_data/",one_hot=True)
x=tf.placeholder(tf.float32,[None,784])
y_=tf.placeholder("float",[None,10])
W=tf.Variable(tf.zeros([784,10]))
b=tf.Variable(tf.zeros([10]))
y=tf.nn.softmax(tf.matmul(x,W)+b)
#compute loss
cross_entropy=-tf.reduce_sum(y_*tf.log(y))
#梯度下降训练模型
train_step=tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(y_,1))
#计算准确率
accuracy=tf.reduce_mean(tf.cast(correct_prediction,"float"))
y_=tf.placeholder("float",[None,10])
#初始化参数
init=tf.initialize_all_variables()
sess=tf.Session()sess.run(init)
#迭代1000次for i in range(1000):
batch_xs,batch_ys=mnist.train.next_batch(100)
sess.run(train_step,feed_dict={x:batch_xs,y_:batch_ys})
print "the %d th step accuracy is :%f" %(i,sess.run(accuracy,feed_dict={x:mnist.test.images,y_:mnist.test.labels})
训练结果:准确率91%