原题地址:https://leetcode-cn.com/problems/range-sum-query-mutable/submissions/
题目描述:
给定一个整数数组 nums,求出数组从索引 i 到 j (i ≤ j) 范围内元素的总和,包含 i, j 两点。
update(i, val) 函数可以通过将下标为 i 的数值更新为 val,从而对数列进行修改。
示例:
Given nums = [1, 3, 5]
sumRange(0, 2) -> 9
update(1, 2)
sumRange(0, 2) -> 8
说明:
数组仅可以在 update 函数下进行修改。
你可以假设 update 函数与 sumRange 函数的调用次数是均匀分布的。
解题方案:
题目给出额的提示是线段树,树状数组。。这是啥玩意哦?开始没管这种结构,自己写一个方法,测试能通过,但时间比较的慢。代码:
class NumArray {
public:
vector<int> sum;
NumArray(vector<int> nums) {
if(nums.size() > 0){
sum = vector<int>(nums.size(), 0);
sum[0] = nums[0];
for(int i = 1; i < nums.size(); i ++)
sum[i] = sum[i - 1] + nums[i];
}
}
void update(int i, int val) {
int diff;
if(i == 0)
diff = val - sum[0];
else
diff = val - sum[i] + sum[i - 1];
for(int j = i; j < sum.size(); j ++)
sum[j] += diff;
}
int sumRange(int i, int j) {
if(i == 0)
return sum[j];
else
return sum[j] - sum[i - 1];
}
};
/**
* Your NumArray object will be instantiated and called as such:
* NumArray obj = new NumArray(nums);
* obj.update(i,val);
* int param_2 = obj.sumRange(i,j);
*/
学习别人写的树状数组结构:
class NumArray {
public:
NumArray(vector<int> nums) {
size=nums.size();
set=vector<int>(nums.size()+1,0);
sum=vector<int>(nums.size()+1,0);
for(int i=0;i<nums.size();i++)
update(i,nums[i]);
}
void update(int i, int val) {
int old=set[i+1];
for(int j=i+1;j<=size;j+=lowbit(j))
sum[j]=sum[j]-old+val;
set[i+1]=val;
}
int sumRange(int i, int j) {
return getsum(j+1)-getsum(i);
}
int lowbit(int x)
{
return x&(-x);
}
private:
vector<int>set,sum;
int size;
int getsum(int i){
int res=0;
while(i>0)
{
res+=sum[i];
i-=lowbit(i);
}
return res;
}
};
/**
* Your NumArray object will be instantiated and called as such:
* NumArray obj = new NumArray(nums);
* obj.update(i,val);
* int param_2 = obj.sumRange(i,j);
*/