动态规划

博客详细介绍了动态规划在解决背包问题上的应用,包括01背包、完全背包、多重背包和分组背包。此外,还探讨了动态规划在解决线性DP问题如最长上升子序列、最长公共子序列等场景的解决方案,以及区间DP、计数DP、数位统计DP等复杂问题的处理策略。同时,提到了状态压缩DP和树形DP等进阶技术。
摘要由CSDN通过智能技术生成

背包问题

模板中数组[1, n],下标都从1开始

01背包

在这里插入图片描述

// 物品数量:n; 最大体积:m
// 状态表示 0 <= i <= n; 0 <= j <= m 

f[i][j] // 从前i个物品中 选取不超过j体积的物品 的最大价值
f[0][0, m] = 0 // 考虑从0个物品里选,初始化为0

f[i - 1][j] // 不选第i件物品
f[i - 1][j - v[i]] + w[i] // 选择第i件物品 此时 j >= v[i]
f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i])	// 状态转移

// 空间优化
for (int i = 1; i <= n; i++) 
	for (int j = m; j >= v[i]; j--)  // 第i层结果与i-1层相关,从大到小枚举
		f[j] = max(f[j], f[j - v[i]] + w[i]);	

完全背包

每个物品无限个

// 第i个物品选取k个:
f[i][j] = max(f[i - 1][j], f[i - 1][j - k * v[i]] + k * w[i])	// k : k >= 0 && k * v[i] <= j
for (int i = 1; i <= n; i++) 
	for (int j = 0; j <= m; j++)
		for (int k = 0; k * v[i] <= j; k++) 
			f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i])

// 优化:
f[i,j] =   max(f[i-1,j], f[i-1,j-vi]+wi,  f[i-1,j-2vi]+2wi, ...)
f[i,j-vi]= max(          f[i-1,j-vi],     f[i-1,j-2vi]+wi,  ...)
--> f[i][j] = max(f[i-1][j], f[i][j-vi]+wi)
for (int i = 1; i <= n; i++) 
	for (int j = 0; j <= m; j++){
   
		f[i][j] = f[i-1][j];
		if(j >= v[i]) f[i][j] = max(f[i][j], f[i][j-v[i]]+w[i])
	}
	
// 空间优化
for (int i = 1; i <= n; i ++ )
    for (int j = v[i]; j <= m; j ++ )	// 第i层结果与i层相关,从小到大枚举
        f[j] = max(f[j], f[j - v[i]] + w[i]);	

多重背包

每个物品s[i]个

f[i][j] = max(f[i - 1][j], f[i - 1][j - k * v[i]] + k * w[i]) // k : 0 <= k <= s[i] && k * v[i] <= j
for (int i = 1; i <= n; i++) 
	for (int j = 0; j <= m; j++)
		for (int k = 0; k <= s[i] && k * v[i] <= j; k++) 
			f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i])

// 二进制优化
对于每件物品数量s[i],将其打包拆分成二进制数1248...2^k,s[i]-2^k,这些数能组合成[0,s[i]]任意数。可以转换成01背包问题,每个包选或者不选。

在这里插入图片描述

import java.util.*;
public class Main {
   
    static int N = 12010;	// 转换成01背包后,物品数量为N * log(s) < 12000
    static int M = 2010;
    // 数组下标都从1开始
    static int[] v = new int[N];    // [1, N]
    static int[] w = new int[N];    // [1, N]
    static int[] f = new int[M];    // [1, M]
    public static void main(String[] args) {
   
        Scanner in = new Scanner(System.in);
        int n = in.nextInt(), m = in.nextInt();
        int cnt = 0;
        while (n -- > 0) {
   
            int a = in.nextInt(), b = in.nextInt(), s = in.nextInt();	// 每种物品的 体积,价值,数量
            int k = 1;	// k = 1, 2, 4, 8 ... 
            while (k <= s) {
   
                cnt++;
                v
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值