背包问题
模板中数组[1, n],下标都从1开始
01背包
// 物品数量:n; 最大体积:m
// 状态表示 0 <= i <= n; 0 <= j <= m
f[i][j] // 从前i个物品中 选取不超过j体积的物品 的最大价值
f[0][0, m] = 0 // 考虑从0个物品里选,初始化为0
f[i - 1][j] // 不选第i件物品
f[i - 1][j - v[i]] + w[i] // 选择第i件物品 此时 j >= v[i]
f[i][j] = max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]) // 状态转移
// 空间优化
for (int i = 1; i <= n; i++)
for (int j = m; j >= v[i]; j--) // 第i层结果与i-1层相关,从大到小枚举
f[j] = max(f[j], f[j - v[i]] + w[i]);
完全背包
每个物品无限个
// 第i个物品选取k个:
f[i][j] = max(f[i - 1][j], f[i - 1][j - k * v[i]] + k * w[i]) // k : k >= 0 && k * v[i] <= j
for (int i = 1; i <= n; i++)
for (int j = 0; j <= m; j++)
for (int k = 0; k * v[i] <= j; k++)
f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i])
// 优化:
f[i,j] = max(f[i-1,j], f[i-1,j-vi]+wi, f[i-1,j-2vi]+2wi, ...)
f[i,j-vi]= max( f[i-1,j-vi], f[i-1,j-2vi]+wi, ...)
--> f[i][j] = max(f[i-1][j], f[i][j-vi]+wi)
for (int i = 1; i <= n; i++)
for (int j = 0; j <= m; j++){
f[i][j] = f[i-1][j];
if(j >= v[i]) f[i][j] = max(f[i][j], f[i][j-v[i]]+w[i])
}
// 空间优化
for (int i = 1; i <= n; i ++ )
for (int j = v[i]; j <= m; j ++ ) // 第i层结果与i层相关,从小到大枚举
f[j] = max(f[j], f[j - v[i]] + w[i]);
多重背包
每个物品s[i]个
f[i][j] = max(f[i - 1][j], f[i - 1][j - k * v[i]] + k * w[i]) // k : 0 <= k <= s[i] && k * v[i] <= j
for (int i = 1; i <= n; i++)
for (int j = 0; j <= m; j++)
for (int k = 0; k <= s[i] && k * v[i] <= j; k++)
f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i])
// 二进制优化
对于每件物品数量s[i],将其打包拆分成二进制数1,2,4,8,...,2^k,s[i]-2^k,这些数能组合成[0,s[i]]任意数。可以转换成01背包问题,每个包选或者不选。
import java.util.*;
public class Main {
static int N = 12010; // 转换成01背包后,物品数量为N * log(s) < 12000
static int M = 2010;
// 数组下标都从1开始
static int[] v = new int[N]; // [1, N]
static int[] w = new int[N]; // [1, N]
static int[] f = new int[M]; // [1, M]
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt(), m = in.nextInt();
int cnt = 0;
while (n -- > 0) {
int a = in.nextInt(), b = in.nextInt(), s = in.nextInt(); // 每种物品的 体积,价值,数量
int k = 1; // k = 1, 2, 4, 8 ...
while (k <= s) {
cnt++;
v