中文文字校对和文档对比合并开源工具调研
针对中文文字错别字校对和word,ppt等文档对比合并需求,调研现存的一些开源工具。
一. 中文文字纠错:
- pycorrector (开源 python3.6)
中文文本纠错工具。
音似、形似错字(或变体字)纠正,可用于中文拼音、笔画输入法的错误纠正。依据语言模型检测错别字位置,通过拼音音似特征、笔画五笔编辑距离特征及语言模型困惑度特征纠正错别字。
语言模型:
Kenlm(统计语言模型工具)
RNNLM(TensorFlow、PaddlePaddle均有实现栈式双向LSTM的语言模型)
可扩展性:
词典可扩展,可使用自己的语料进行训练,该repo使用的是人民日报数据。扩展性强。
pycorrector纠错流程:
-
加载字典
-
统一编码
-
长句切分为短句,对每一个短句进行检错纠错
-
首先,检测句子中的疑似错误信息,返回的疑似错误信息包括[错误词、错误词位置、错误类型],具体的做法是:①将句子切分成一个个的词语,如果词语不是过滤词也没有出现在词、频数字典中,就认为这个词可能是一个错误词,把它加入疑似错误信息;②根据语言模型检测疑似错误字,加入疑似错误信息。
-
针对上一步得到的错误信息,逐个对错误进行纠正:如果困惑集中有这个词,直接将错误词替换即可;否则,取得所有可能正确的
-