经典第十一章 例题11-2 UVA 11395 Slim Span(最小生成树)【ACM/ICPC Japan2007】

29 篇文章 0 订阅
15 篇文章 0 订阅

题目链接:
https://odzkskevi.qnssl.com/8e16f8701018d0e3529ac3ca319e1f67
中文题意:给出一个n(n<=100)结点的图,求苗条度(最大边减最小边的值)尽量小的生成树。
【分析】首先把边按权值从小到大排序。对于一个连续的边集区间[L,R],如果这些边使得n个点全部连通,则一定存在一个苗条度不超过W[R]-W[L]的生成树(其中W[i]表示排序后第i条边的权值)。
从小到大枚举L,对于每个L,从小到大枚举R,同时用并查集将新进入[L,R]的边的两端的点合并成一个集合,与Kruskal算法一样。当所有点连通时停止枚举R,换下一个L(并且把R重置为L)继续枚举。

下面是AC代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

int pre[105],n,m;

struct node
{
    int u,v,cost;
}a[50000];

void init()
{
    for(int i=1;i<=n;i++)
    {
        pre[i]=i;
    }
}

int fin(int x)
{
    if(x==pre[x])
    {
        return x;
    }
    else
    {
        return pre[x]=fin(pre[x]);
    }
}

void join(int x,int y)
{
    int t1=fin(x);
    int t2=fin(y);
    if(t1!=t2)
    {
        pre[t1]=t2;
    }
}

bool cmp(node x,node y)
{
    return x.cost<y.cost;
}

int main()
{
    while(scanf("%d%d",&n,&m)&&n)
    {
        for(int i=0;i<m;i++)
        {
            scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].cost);
        }
        sort(a,a+m,cmp);
        int re=10000000;
        for(int i=0;i<m;i++)
        {
            init();
            int sum=0;
            for(int j=i;j<m;j++)
            {
                if(fin(a[j].u)!=fin(a[j].v))
                {
                    join(a[j].u,a[j].v);
                    sum++;
                }
                if(sum==n-1)
                {
                    re=min(re,a[j].cost-a[i].cost);
                    break;
                }
            }
        }
        if(re!=10000000)
        printf("%d\n",re);
        else
        {
            printf("-1\n");
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值