题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5916
【中文题意】给你一个含有n个数的1-n的序列,然后再全排列中让你求第k大的∑i=1n−1 gcd(pi.pi+1) 的序列是多少。
【思路分析】假如每个序列的前一个数和后一个数相差1或者前一个数是1或者后一个数是1的话那么这两个数的gcd都是1,如果找第k大的话试一下不难发现一定有某两个数的gcd为k,然后其它任意相邻两个数的gcd都尽量为1,然后这样的话我们可以构造这样一个序列,让第一个数位2*k,第二个数为k,然后依次为k-1…..1然后再从k+1到n(去除2 *k),然后如果你仔细观察的话会发现,2 *k<=n,不正好也暗示了我们么?另外这个序列反过来也是对的。
【AC代码】
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<queue>
#include<algorithm>
#include<stack>
using namespace std;
int main()
{
int t,iCase=0,n,k;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&k);
printf("Case #%d: %d %d",++iCase,k*2,k);
for(int i=k-1;i>=1;i--)
{
printf(" %d",i);
}
for(int i=k+1;i<=n;i++)
{
if(i!=2*k)
{
printf(" %d",i);
}
}
printf("\n");
}
return 0;
}