Python3机器学习实践:Kmeans++聚类【实例:啤酒聚类】

本文介绍了KMeans聚类算法及其存在的问题,重点讲解了优化的Kmeans++算法,通过使用欧几里得距离。文中对比了使用AnFany和Sklearn库实现KMeans++聚类的结果,并提供了源码下载方式。
摘要由CSDN通过智能技术生成

1.png

image
下面介绍Kmeans以及Kmeans++算法理论以及算法步骤
2.png
3.png
根据样本特征选择不同的距离公式,程序实例中采用欧几里得距离。下面分别给出Kmeans以及Kmeans++算法的步骤。
4.png
Kmeans聚类算法的结果会因为初始的类别中心的不同差异很大,为了避免这个缺点,下面介绍对初始类别中心的选择进行了优

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AnFany

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值