联邦学习
星如雨グッ!(๑•̀ㅂ•́)و✧
这个作者很懒,什么都没留下…
展开
-
联邦学习综述(二)
二、用Shapley值解释联邦学习模型2.1 Shapley值我们知道机器学习模型很多都是黑盒或者半黑盒模型。如果模型是用来做语音识别、图像识别之类的感知任务,可能人们就不会太过关心模型的可解释性问题;当然也有很多对抗学习的工作在研究感知模型,想必很多人对那个熊猫加没信号的电视机就变成长臂猿的例子记忆犹新,但这些工作可能更多是从模型可靠性的角度出发。对于另一些关键应用中的非感知类的机器学习模型,比如贷款风险估算,保险核保预测,欺诈识别模型等等,模型的可解释性就尤为重要。我在之前的一篇博客“Algori原创 2020-11-16 20:03:09 · 1377 阅读 · 0 评论 -
联邦学习综述(一)
一、联邦学习概念当今的AI仍然面临两个主要挑战。 一是在大多数行业中,数据以孤立的孤岛形式存在。 另一个是加强数据隐私和安全性。 我们为这些挑战提出了一种可能的解决方案:安全的联邦学习。 除了Google在2016年首次提出的联邦学习框架之外,我们还引入了一个全面的安全联邦学习框架,其中包括水平联邦学习,垂直联邦学习和联合转移学习。 我们提供联邦学习框架的定义,体系结构和应用程序,并提供有关该主题的现有著作的全面概述。 另外,我们建议在基于联盟机制的组织之间建立数据网络,作为一种有效的解决方案,使知识可以原创 2020-11-16 17:36:24 · 1098 阅读 · 1 评论 -
XGB模型可解释性SHAP包实战
前言Xgboost相对于逻辑回归模型在进行预测时往往有更好的精度,但是同时也失去了线性模型的可解释性。Feature importance可以直观地反映出特征的重要性,看出哪些特征对最终的模型影响较大。但是无法判断特征与最终预测结果的关系是如何的。Lundberg和Lee的论文提出了SHAP值这一广泛适用的方法用来解释各种模型(分类以及回归),如boosting和神经网络模型。下面我们通过实战讲解SHAP。请在SofaSofa数据竞赛页面进行数据下载,下载解压这个文件。1.XGB建模1.1 数据原创 2020-11-14 22:34:44 · 1895 阅读 · 0 评论