动态规划算法之01背包问题-我对递推关系式的理解

本文详细解析动态规划算法在解决01背包问题中的递推关系式,通过分析物品数量n和总容量capacity,阐述如何构建二维数组V(i,j)并找出最优价值。关键在于确定两种可能性:背包容量不足时仅考虑前i-1个物品,容量足够时在装与不装第i个物品间选择最优解,避免重复计算,提高效率。" 113517271,10535253,Python批量读取CSV绘制多条折线图,"['Python编程', '数据可视化', 'matplotlib', '文件操作', '数据处理']
摘要由CSDN通过智能技术生成

一、前提

如果你已经仔仔细细读懂了01背包问题的题意,且对动态规划算法的思想有了一定的了解,那就继续吧。如果没有,先看看我转过的关于01背包问题的另一篇博客。

 

二、分析与理解

给定的物品数量为n,总容量为capacity。把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第 i 个物品选或不选),Vi表示第 i 个物品的价值,Wi表示第 i 个物品的体积(重量),我们知道这个问题的目标是求max(V1X1+V2X2+…+VnXn),当然需要满足约束条件W1X1+W2X2+…+WnXn<=capacity。

由于我们是这样解决的,面对n件物品,每一次只对前1、2、3......直到前n件物品考虑,这个过程用变量 i 控制(1≤i≤n);而每次考虑前 i 件物品时,要从背包容量为1、2、3......直到capacity时一步步考虑,这个过程用变量 j 控制(1≤j≤capacity)。所以定义一个二维数组 V(i,j) 表示当前背包容量为 j,前 i 个物品最佳组合所取得的最大价值。

接下来寻找递推关系式,我觉得这是解决问题最关键的部分:

求每一项 V(i,j)时,也就是面对前i件物品、背包容量只有j,有两种可能性:

    第一,包的容量 j 比第 i 件物品重量w(i)小,装不下,只能不装,那么此时的价值与前i-1个的价值是一样的,即V(i,j)=V(i-1,j);

    第二,还有足够的容量可以装第 i 件商品,但装

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值