动态规划——背包问题整理(01背包+完全背包)

本文详细介绍了动态规划在解决01背包和完全背包问题中的应用。通过五步曲分析,解释了如何从暴力解法转换为动态规划方法,以降低时间复杂度。文中讨论了01背包的二维数组和一维滚动数组实现,并指出完全背包问题中物品可无限次选取的特点,提供了一维动态规划的正序遍历解决方案。
摘要由CSDN通过智能技术生成

1、引言

背包问题简单描述,其实就是有一堆物品同时具有一定价值和重量,现有一个背包可以承受最大重量m,那么要怎么选择在不超过背包最大重量的前提下,使背包中选择的物品价值最大。

最常见的背包问题又可以分为:01背包和完全背包,图示如下

(图片引自:代码随想录)

2、标准01背包分析

(1)问题描述

(2)分析

        最直接的想法应该是暴力解法,每一件物品只存在两种状态,拿或者不拿,那么便可以采用回溯的思想例举出所有可能,然后找到价值最大的组合,但我们会发现时间复杂度就到了O(2^n),n代表物品的种类数。也就是采用暴力解法会带来指数级别的时间复杂度,因此,我们可以考虑采用动态规划来求解。

动态规划五步曲前四步:

1)确定dp含义

        因为同时存在物品种类和背包最大重量,要求组合的最大价值。我们可以采用二维数组表示,即 dp[i][j],表示从物品0~i中任意取,放进容量为j的背包中,价值总和最大是多少。

2)递推公式

        根据dp的定义,我们可以从两个方向来推导dp:

        不取物品i:从dp[i-1][j]进行推导,即背包的容量为j,里面不放物品i的最大价值。此时的dp[i][j]就是dp[i-1][j]。(其实就是当物品i的重量大于背包j的重量时,物品i无法放进背包中,所以被背包内的价值依然和前面相同。)

        放物品i:由dp[i - 1][j - weight[i]]推出,dp[i - 1][j - weight[i]] 为背包容量为j - weight[i]的时候不放物品i的最大价值,那么dp[i - 1][j - weight[i]] + value[i] (物品i的价值),就是背包放物品i得到的最大价值。

所以递归公式: dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i]);

3)dp初始化

        首先从dp[i][j]的定义出发,如果背包容量j为0的话,即dp[i][0],无论是选取哪些物品,背包价值总和一定为0。

        其次是根据递推公式还需要初始化dp[0][j],当背包的容量j<weight(0)ÿ

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值