js计算时间为刚刚、几分钟前、几小时前、几天前··

function timeago(dateTimeStamp){   //dateTimeStamp是一个时间毫秒,注意时间戳是秒的形式,在这个毫秒的基础上除以1000,就是十位数的时间戳。13位数的都是时间毫秒。
    var minute = 1000 * 60;      //把分,时,天,周,半个月,一个月用毫秒表示
    var hour = minute * 60;
    var day = hour * 24;
    var week = day * 7;
    var halfamonth = day * 15;
    var month = day * 30;
    var now = new Date().getTime();   //获取当前时间毫秒
    console.log(now)
    var diffValue = now - dateTimeStamp;//时间差

    if(diffValue < 0){
    	return;
    }
	var minC = diffValue/minute;  //计算时间差的分,时,天,周,月
	var hourC = diffValue/hour;
	var dayC = diffValue/day;
	var weekC = diffValue/week;
	var monthC = diffValue/month;
	//此处考虑小数情况,感谢 情非得已https://blog.csdn.net/weixin_48495574 指正
	if(monthC >= 1 && monthC < 4){
		result = " " + parseInt(monthC) + "月前"
	}else if(weekC >= 1 && weekC < 4){
		result = " " + parseInt(weekC) + "周前"
	}else if(dayC >= 1 && dayC < 7){
		result = " " + parseInt(dayC) + "天前"
	}else if(hourC >= 1 && hourC < 24){
		result = " " + parseInt(hourC) + "小时前"
	}else if(minC >= 1 && minC < 60){
		result =" " + parseInt(minC) + "分钟前"
	}else if(diffValue >= 0 && diffValue <= minute){
    	result = "刚刚"
    }else {
    	var datetime = new Date();
		datetime.setTime(dateTimeStamp);
		var Nyear = datetime.getFullYear();
		var Nmonth = datetime.getMonth() + 1 < 10 ? "0" + (datetime.getMonth() + 1) : datetime.getMonth() + 1;
		var Ndate = datetime.getDate() < 10 ? "0" + datetime.getDate() : datetime.getDate();
		var Nhour = datetime.getHours() < 10 ? "0" + datetime.getHours() : datetime.getHours();
		var Nminute = datetime.getMinutes() < 10 ? "0" + datetime.getMinutes() : datetime.getMinutes();
		var Nsecond = datetime.getSeconds() < 10 ? "0" + datetime.getSeconds() : datetime.getSeconds();
    	result = Nyear + "-" + Nmonth + "-" + Ndate
    }
	return result;
}
### 如何在Jupyter Notebook中安装配置OpenCV (cv2) #### 选择合适的Python环境 为了确保最佳兼容性和性能,在开始之前建议创建一个新的Conda虚拟环境来管理依赖项[^3]。 ```bash conda create --name opencv_env python=3.9 conda activate opencv_env ``` #### 配置软件包仓库镜像源 考虑到网络因素的影响,推荐使用国内的清华大学开源软件镜像站作为pip和conda的默认索引网址,从而加速下载过程并提高成功率[^4]。 对于`conda`命令: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --set show_channel_urls yes ``` 对于`pip`工具,则可以通过编辑或新建文件`~/.pip/pip.conf`(Linux/MacOS)或`%APPDATA%\pip\pip.ini`(Windows),添加如下内容: ```ini [global] index-url = https://pypi.tuna.tsinghua.edu.cn/simple ``` #### 安装必要的库和支持组件 通过上述优化后的通道快速获取所需资源。针对OpenCV本身及其配套模块执行以下操作即可完成部署工作[^1]。 ```bash conda install opencv ``` 如果希望获得更全面的功能支持,还可以考虑额外安装一些常用的图像处理扩展包: ```bash pip install numpy matplotlib scikit-image imutils ``` #### 测试安装效果 启动Jupyter Notebook服务,并尝试导入cv2模块验证是否成功加载了OpenCV库函数。 ```python import cv2 print(cv2.__version__) ``` 当以上代码能够正常输出版本号而没有任何错误提示时即表明整个流程已经顺利完成。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值