文献阅读笔记【13】:基于深度学习的激光扫描范围图像道路裂缝分类: 超参数选择的比较研究


原文和部分译文 https://share.weiyun.com/33ZDOPxE

该文章为了解决DCNN在裂缝检测方面的假阳性等问题提出来对于网络结构中的超参数的比较研究,旨在研究确定适当的超参数以获得最佳的性能。

通过提供一个最优的DCNN体系结构, 利用原始范围,图像,本研究解决了两个尚未在基于DCNN的裂缝分类研究中得到彻底解决的问题。第一个问题是激光扫描图像范围数据中的扰动,包括表面变化和非裂缝模式,这需要一种具有鲁棒性的裂缝分类工具。第二个问题与利用DCNN对激光扫描范围图像进行道路裂缝分类的超参数选择有关。为了解决这些问题,进行了一项全面的比较研究。

文章主要通过一系列实验对超参数的选择和调整进行了全面的讨论,开发了一个超参数的选择过程。研究了基于DCNN的道路裂缝分类的网络结构上的最佳联合超参数配置和训练。在一项比较研究中,开发了36种不同布局的DCNN结构,用于裂缝分类。

超参数:

  • 超参数主要可以分为两类:与网络结构有关的参数和与训练有关的参数。
  • i) 与网络结构有关的超参数
    超参数,例如内核大小,步幅,网络宽度(即每个卷积层中的内核数)和网络深度(即层数),决定了卷积神经网络的布局。
  • ii) 与训练相关的超参数在本研究中,采用动量算法[38]的随机梯度下降(SGD)作为优化技术。 因此,训练过程涉及几个超参数,包括dropout因子,动量,权重衰减因子,epoch数,小批量大小,学习率和学习率dropout因子和LReLU因子。

提出的基于DCNN的方法

在这里插入图片描述

包含了裂缝分类的两步过程( 即训练和预测) ,首先,对所提出的DCNN分类器进行训练,并对激光成像系统获得的距离图像进行验证, 然后利用训练后的分类器对新数据集上的裂缝分类进行训练。利用滑动窗口技术,将采集到的路面图像裁剪成许多尺寸较小的图像块,这样可以减少训练期间的计算成本。 同时,每个裁剪的图像块不仅携带图像特征,还携带位置信息。 一旦DCNN分类器预测了图像斑块,滑动窗口技术就会将每个斑块恢复到其原始位置,从而指示相应区域是否包含裂缝。 因此,可以生成包含裂缝位置信息的裂缝图。
在这里插入图片描述

采用的性能指标

  • 精确率
  • 召回率
  • F1-测度(精确率和召回率的联合评估值)
    在这里插入图片描述
    在这里插入图片描述
    式中,TP为正确识别出的裂缝图像数量(即真正);FP为非裂缝图像被误识别为裂缝(即假阳性)的数量;FN表示被误识别为非裂缝样本的裂缝图像数量(即假阴性)。

实验

实验研究部分介绍了成像系统、数据生成、实验。,其中成像系统、数据生成部分没什么新意,重点在于实验部分。

实验部分采用四个案例:

  • 不同内核大小、 网络深度和宽度的影响
  • 不同小批量大小、 学习率、 dropout率和LRELU因素的影响
  • 不同的基准架构的影响
  • 采用最优体系结构的裂缝分类实例

comments
该文章并未提出关于裂缝的相关创新方法内容,其重点在对比调参,提出了一种获取最优的参数的实验过程,对于我之后的实验调参会有很大的帮助,具体的实验过程由于过于繁琐,已经整理为文档【查看译文】,可在文章开头下载。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Shine.Zhang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值