Problem Description
Master Mind KongMing gave Fei Zhang a secrete master plan stashed in a pocket. The plan instructs how to deploy soldiers on the four corners of the city wall. Unfortunately, when Fei opened the pocket he found there are only four numbers written in dots on a piece of sheet. The numbers form 2×2 matrix, but Fei didn't know the correct direction to hold the sheet. What a pity!
Given two secrete master plans. The first one is the master's original plan. The second one is the plan opened by Fei. As KongMing had many pockets to hand out, he might give Fei the wrong pocket. Determine if Fei receives the right pocket.
Input
The first line of the input gives the number of test cases, T(1≤T≤104). T test cases follow. Each test case contains 4 lines. Each line contains two integers ai0 and ai1 (1≤ai0,ai1≤100). The first two lines stands for the original plan, the 3rd and 4th line stands for the plan Fei opened.
Output
For each test case, output one line containing "Case #x: y", where x is the test case number
(starting from 1) and y is either "POSSIBLE" or "IMPOSSIBLE" (quotes for clarity).
Sample Input
4
1 2
3 4
1 2
3 4
1 2
3 4
3 1
4 2
1 2
3 4
3 2
4 1
1 2
3 4
4 3
2 1
Sample Output
Case #1: POSSIBLE
Case #2: POSSIBLE
Case #3: IMPOSSIBLE
Master Mind KongMing gave Fei Zhang a secrete master plan stashed in a pocket. The plan instructs how to deploy soldiers on the four corners of the city wall. Unfortunately, when Fei opened the pocket he found there are only four numbers written in dots on a piece of sheet. The numbers form 2×2 matrix, but Fei didn't know the correct direction to hold the sheet. What a pity!
Given two secrete master plans. The first one is the master's original plan. The second one is the plan opened by Fei. As KongMing had many pockets to hand out, he might give Fei the wrong pocket. Determine if Fei receives the right pocket.
Input
The first line of the input gives the number of test cases, T(1≤T≤104). T test cases follow. Each test case contains 4 lines. Each line contains two integers ai0 and ai1 (1≤ai0,ai1≤100). The first two lines stands for the original plan, the 3rd and 4th line stands for the plan Fei opened.
Output
For each test case, output one line containing "Case #x: y", where x is the test case number
(starting from 1) and y is either "POSSIBLE" or "IMPOSSIBLE" (quotes for clarity).
Sample Input
4
1 2
3 4
1 2
3 4
1 2
3 4
3 1
4 2
1 2
3 4
3 2
4 1
1 2
3 4
4 3
2 1
Sample Output
Case #1: POSSIBLE
Case #2: POSSIBLE
Case #3: IMPOSSIBLE
Case #4: POSSIBLE
题意:给两个二维数组看能不能把他们旋转然后使他们相同。对于我是模拟题把,目前没有想到好的方法:
#include <iostream>
#include<stdio.h>
using namespace std;
int a[5][5],b[5][5];
bool fact()
{
int B;
for(int i=1; i<=5; i++)//旋转
{
int t=a[2][1];
a[2][1]=a[2][2];
a[2][2]=a[1][2];
a[1][2]=a[1][1];
a[1][1]=t;
B=1;
for(int r=1; r<=2; r++)//判断 {
for(int j=1; j<=2; j++)
{
//cout<<a[r][j]<<" "<<b[r][j]<<endl;
if(a[r][j]!=b[r][j])
{
B=0;
r=2;
break;
}
}
}
if(B)
break;
}
if(B) return true;
return false;
}
int main()
{
int t;
cin>>t;
for(int T=1; T<=t; T++)
{
for(int i=1; i<=2; i++)
for(int j=1; j<=2; j++)
scanf("%d",&a[i][j]);
for(int i=1; i<=2; i++)
for(int j=1; j<=2; j++)
scanf("%d",&b[i][j]);
if(fact())
cout<<"Case #"<<T<<": POSSIBLE"<<endl;
else
cout<<"Case #"<<T<<": IMPOSSIBLE"<<endl;
}
return 0;
}