层次分析法
1.将决策问题分层,分成n层之后,对每一层进行研究。
2.对每一层的两个因素两两进行比较,给出对比矩阵A(这个对比矩阵有一个很厉害的理解方法,那就是把一块石头砸碎,之后每一块小石头代表权重值,而对比矩阵就是对应的这两块小石头的比值)。如果这个矩阵是一致矩阵,则这个矩阵具有这些特点:
- A矩阵的秩为1(有效行数为1),他拥有唯一的非零特征根
- A的任一列向量都对应于特征根的特征向量!
显然,如果这个矩阵是一致矩阵,那么他对应的归一化后的特征向量中的元素就是权重向量w。只要通过一致性检验,那么最大特征根λ对应的特征向量w也就相当于一致矩阵的唯一特征根n以及他所对应的特征向量。(思想核心,近似替代!)实际上对比矩阵往往不是一致矩阵,因此需要进行一致性检验!如何进行一致性检验?
3.一致性指标CI公式如下:
CI为一致性指标,n代表n阶矩阵,λ代表最大特征值(由定理知λ≥n)。当λ等于n时,矩阵A为一致矩阵,λ越大,则A的不一致程度越严重。
4.随机一致性指标RI由实验给出(参考值)
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | …… |
RI | 0 | 0 | 0.58 | 0.9 | 1.12 | 1.24 | 1.32 | …… |
根据RI计算一致比率CR:
若CR<0.1,则通过一致性检验,若不通过,需要重新比较生成对比矩阵A。
5.如何将多层的权值组合起来呢?将权重相乘组合即可!
6.最后地,再做一次组合一致性检验,确定组合全职是否可以作为最后的决策依据。(原理同上)