Pseudoforest (伪森林) 最大生成树

Pseudoforest

Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 402 Accepted Submission(s): 173
 
Problem Description
In graph theory, a pseudoforest is an undirected graph in which every connected component has at most one cycle. The maximal pseudoforests of G are the pseudoforest subgraphs of G that are not contained within any larger pseudoforest of G. A pesudoforest is larger than another if and only if the total value of the edges is greater than another one’s.

 
Input
The input consists of multiple test cases. The first line of each test case contains two integers, n(0 < n <= 10000), m(0 <= m <= 100000), which are the number of the vertexes and the number of the edges. The next m lines, each line consists of three integers, u, v, c, which means there is an edge with value c (0 < c <= 10000) between u and v. You can assume that there are no loop and no multiple edges.
The last test case is followed by a line containing two zeros, which means the end of the input.
 
Output
Output the sum of the value of the edges of the maximum pesudoforest.
 
Sample Input
3 3
0 1 1
1 2 1
2 0 1
4 5
0 1 1
1 2 1
2 3 1
3 0 1
0 2 2
0 0
 
Sample Output
3
5
// 找到一个图,使得每一个连通分量最多有一个环
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#define MAX_V 10005
using namespace std;

int V, E, K;
int flag, n;
int u, v, w;
int ans;
struct edge {
    int u, v, w;
};

edge es[MAX_V << 4];
bool circle[MAX_V];
int pa[MAX_V];
int high[MAX_V];

bool cmp(const edge &e1, const edge &e2) {
    return e1.w > e2.w;
}

void init(int n) {
    for (int i = 0; i <= n; i++) {
        pa[i] = i;
        high[i] = 0;
    }
}

int _find(int x) {
    if (pa[x] == x) return pa[x];
    else return pa[x] =  _find(pa[x]);
}

int same(int x, int y) {
    return _find(x) == _find(y);
}

void unite(int x, int y, int w) {
    x = _find(x);
    y = _find(y);
    if (x == y) {
        // 如果两个点都不在环内,加上这条边,形成环,将两个点标记在环内
        if (!circle[x]) {
            ans += w;
            circle[x]= 1;
        }
        return ;
    }
    // 都不在环中
    if (!circle[x] && !circle[y]) {
        ans += w;

        if (high[x] < high[y]) {
            pa[x] = y;
        } else {
            pa[y] = x;
            if (high[x] == high[y]) high[x]++;
        }
    } else if (!circle[x] || !circle[y]) {
        // 有一个在环中
        circle[x] = circle[y] = 1;
        ans += w;

        if (high[x] < high[y]) {
            pa[x] = y;
        } else {
            pa[y] = x;
            if (high[x] == high[y]) high[x]++;
        }

    }
}

int main(void)
{
   // freopen("in.txt", "r", stdin);
    while (~scanf("%d%d", &V, &E)) {
        if (V == 0 && E == 0) break;
        memset(circle, 0, sizeof(circle));
        for (int i = 0; i < E; i++) {
            scanf("%d%d%d", &es[i].u, &es[i].v, &es[i].w);
        }
        ans = 0;
        sort(es, es + E, cmp);
        init(V); // 初始化并查集
        for (int i = 0; i < E; i++) {
            edge e = es[i];
            unite(e.u, e.v, e.w);
        }
        printf("%d\n", ans);
    }
    return 0;
}


 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值