Detection ouput

Detection ouput

SSD

输入输出

  • inputs[0]: location map, {N, boxes * 4}

  • inputs[1]: confidence map, ssd: {N, classes, boxes}, yolov3: {N, boxes, classes}

  • inputs[2]: priorbox prior boxes, dims = 4 {1, 2, boxes * 4(xmin, ymin, xmax, ymax)}

  • output0: shape_out = Shape({1, 1, param.keep_top_k * input[0]->num(), 7}, Layout_NCHW);

  • 输出大小为[1, 1, x, 7],其中x是最后保留的框的个数,最后一维存放的数据为:
    [image_id, label, confidence, xmin, ymin, xmax, ymax]

  • mbox_priorbox, 仅仅是计算norm_mbox_loc对应于原图的大小,有了mbox_priorbox层来获取原图的比例,norm_mbox_loc就能够通过比例来计算出所处于原图具体的什么位置了。

参数 Z

  • code_type_类型默认为 CENTER_SIZE

  • variance_encoded_in_target_ 默认为false,表示不使用variance带入到位置预测的结果计算结果

  • num_priors_ 表示所有候选框的数目 = N*boxes

  • share_location 默认为true,表示位置预测默认将所有类的位置归为一种类别进行位置预测

  • num_loc_classes share_location ? 1 : num_classes

  • background_label_id 背景标签的id

  • clip_bbox: 是否将位置预测值限定在0到1中,图片大小内

  • priors.size() = n

  • priors.push_back(_num_priors / num); // boxes

  • int num_priors = _num_priors / num; // boxes

算法

DecodeBBoxes // 通过预测的位置结果以及先验框计算预测结果并储存到bbox_data中
PermuteData // 将输出通道从num_batch d classes 1 转换成 num_batch classes d 1
NMS // 非极大抑制算法

DecodeBBoxes

通过预测的位置结果以及先验框计算预测结果并储存到bbox_data中

  • 三种方式见 3

在这里插入图片描述

DecodeBBoxes

NMS

参考

1800045650

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值