共识算法系列:Paxos/Multi-Paxos算法关键点综述、优缺点总结 - 知乎 (zhihu.com)
Paxos算法
Paxos算法是莱斯利·兰伯特(英语:Leslie Lamport,LaTeX中的“La”)于1990年提出的一种基于消息传递且具有高度容错特性的共识(consensus)算法。需要注意的是,Paxos常被误称为“一致性算法”。但是“一致性(consistency)”和“共识(consensus)”并不是同一个概念。Paxos是一个共识(consensus)算法[1]。
Paxos使用场景
基于消息传递通信模型的分布式系统,不可避免的会发生以下错误:进程可能会慢、被杀死或者重启,消息可能会延迟、丢失、重复,在基础Paxos场景中,先不考虑可能出现消息篡改即拜占庭错误的情况。Paxos算法解决的问题是在一个可能发生上述异常的分布式系统中如何就某个值达成一致。一个典型的场景是,在一个分布式数据库系统中,如果各节点的初始状态一致,每个节点都执行相同的操作序列,那么他们最后能得到一个一致的状态。为保证每个节点执行相同的命令序列,需要在每一条指令上执行一个“共识算法”以保证每个节点看到的指令一致。一个通用的共识算法可以应用在许多场景中,是分布式计算中的重要问题。因此从20世纪80年代起对于共识算法的研究就没有停止过。
Paxos算法描述
为描述Paxox算法,Lampor虚拟了一个叫做Paxos的希腊城邦,这个岛按照议会民主制的政治模式制订法律,但是没有人愿意将自己的全部时间和精力放在这种事情上。所以无论是议员,议长或者传递纸条的服务员都不能承诺别人需要时一定会出现,也无法承诺批准决议或者传递消息的时间。但是这里假设没有拜占庭将军问题(Byzantine failure,即虽然有可能一个消息被传递了两次,但是绝对不会出现错误的消息);只要等待足够的时间,消息就会被传到。另外,Paxos岛上的议员是不会反对其他议员提出的决议的。
首先将议员的角色分为 proposers,acceptors,和 learners(允许身兼数职)。proposers 提出提案,提案信息包括提案编号和提议的 value;acceptor 收到提案后可以接受(accept)提案,若提案获得多数派(majority)的 acceptors 的接受,则称该提案被批准(chosen);learners 只能“学习”被批准的提案。划分角色后,就可以更精确的定义问题:
- 决议(value)只有在被 proposers 提出后才能被批准(未经批准的决议称为“提案(proposal)”);
- 在一次 Paxos 算法的执行实例中,只批准(chosen)一个 value;
- learners 只能获得被批准(chosen)的 value。
问题分析
根据模拟的场景,可以想象出如下图所示的场景:
有多个Proposer同时向多个Acceptor提出Proposal提案,算法需要确定一个最终的提案Chosen Proposal。
根据上述场景,首先给出Paxos的几点约束:
- P1: Acceptor必须接受他接收到的第一个提案,注意P1是不完备的。
如果恰好一半Acceptor接受的提案具有value A,另一半接受的提案具有value B,那么就无法形成多数派,无法批准任何一个value。
- P2:当且仅当Acceptor没有回应过编号大于n的prepare请求时,Acceptor接受(accept)编号为n的提案。
如果一个没有chosen过任何proposer提案的Acceptor在prepare过程中回答了一个proposer针对提案n的问题,但是在开始对n进行投票前,又接受(accept)了编号小于n的另一个提案(例如n-1),如果n-1和n具有不同的value,这个投票就会违背P2c。因此在prepare过程中,Acceptor进行的回答同时也应包含承诺:不会再接受(accept)编号小于n的提案。
- P3:只有Acceptor没有接受过提案Proposer才能采用自己的Value,否者Proposer的Value提案为Acceptor中编号最大的Proposer Value;
- P4: 一个提案被选中需要过半数的Acceptor接受。
假设A为整个Acceptor集合,B为一个超过A一半的Acceptor集合,B为A的子集,C也是一个超过A一半的Acceptor集合,C也是A的子集,有此可知任意两个过半集合中必定有一个共同的成员Acceptor;此说明了一个Acceptor可以接受不止一个提案,此时需要一个编号来标识每一个提案,提案的格式为:[编号,Value],编号为不可重复全序的,因为存在着一个一个Paxos过程只能批准一个value这时又推出了一个约束P3;
- P5:当编号K0、Value为V0的提案(即[K0,V0])被过半的Acceptor接受后,今后(同一个Paxos或称一个Round中)所有比K0更高编号且被Acceptor接受的提案,其Value值也必须为V0。
- 该约束还可以表述为:一旦一个具有value v的提案被批准(chosen),那么之后任何Acceptor再次接受(accept)的提案必须具有value v。
- 一旦一个具有value v的提案被批准(chosen),那么以后任何proposer提出的提案必须具有value v。
- 如果一个编号为n的提案具有value v,那么存在一个多数派,要么他们中所有人都没有接受(accept)编号小于n的任何提案,要么他们已经接受(accept)的所有编号小于n的提案中编号最大的那个提案具有value v。
-
- 算法运行流程
-
经过上面的推导,我们总结下Paxos算法的流程。
Paxos算法分为两个阶段。具体如下:
阶段一:
- Proposer选择一个提案编号N,然后向半数以上的Acceptor发送编号为N的Prepare请求。
- 如果一个Acceptor收到一个编号为N的Prepare请求,且N大于该Acceptor已经响应过的所有Prepare请求的编号,那么它就会将它已经接受过的编号最大的提案(如果有的话)作为响应反馈给Proposer,同时该Acceptor承诺不再接受任何编号小于N的提案。
阶段二:
- 如果Proposer收到半数以上Acceptor对其发出的编号为N的Prepare请求的响应,那么它就会发送一个针对[N,V]提案的Accept请求给半数以上的Acceptor。注意:V就是收到的响应中编号最大的提案的value,如果响应中不包含任何提案,那么V就由Proposer自己决定。
- 如果Acceptor收到一个针对编号为N的提案的Accept请求,只要该Acceptor没有对编号大于N的Prepare请求做出过响应,它就接受该提案。
如果一个Proposer收到了半数以上的Acceptor的对accept确认的请求,那么一个Proposal就被chosen了
阶段三:
当确定了一个Proposal那么就需要把这个proposal传递到集群的Learner,这里可以选择如下三种方案: