卷积和相关

在执行线性空间滤波时,经常会遇到两个概念相关和卷积二者基本相似,在进行图像匹配是一个非常重要的方法。
相关是滤波器模板移过图像并计算计算每个位置乘积之和的处理卷积的机理相似,但滤波器首先要旋转180度
相关的计算步骤:
(1)移动相关核的中心元素,使它位于输入图像待处理像素的正上方
(2)将输入图像的像素值作为权重,乘以相关核
(3)将上面各步得到的结果相加做为输出
卷积的计算步骤:
(1)卷积核绕自己的核心元素顺时针旋转180度
(2)移动卷积核的中心元素,使它位于输入图像待处理像素的正上方
(3)在旋转后的卷积核中,将输入图像的像素值作为权重相乘
(4)第三步各结果的和做为该输入像素对应的输出像素
超出边界时要补充像素,一般是添加0或者添加原始边界像素的值。可以看出他们的主要区别在于计算卷积的时候,卷积核要先做旋转。而计算相关过程中不需要旋转相关核。
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/qq_33144323/article/details/79974591
文章标签: 卷积 相关
个人分类: 深度学习
上一篇《深度学习——实战caffe》——利用mnist数据集训练好的lenet_iter_10000.caffemodel模型测试一张自己的手写体数字
下一篇Ubuntu系统拼音无法正确打字怎么解决?
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭