PLA算法

PLA(Percetron Learning Algorithm)是一种用于二维或高维线性可分问题的分类算法。当数据线性可分时,PLA通过不断修正找到分类边界;若数据线性不可分,可以通过pocket PLA寻找近似最优解。本文介绍了PLA的工作原理、线性可分情况下的证明以及线性不可分时的应对策略。
摘要由CSDN通过智能技术生成

PLA算法——Percetron Learning Algorithm

        参考博客:统计学习方法(机器学习)—— 2、感知机

1、PLA用来干什么

        感知器学习算法PLA用于解决二维或者高维的线性可分问题的分类,最终分类结果是两类——是或不是。以二维数据为例,下图中第一张是线性可分的,其它两张都不是线性可分的:
在这里插入图片描述

2、PLA怎么实现的

        PLA算法用来求解向量W(用于预测的向量,可以看作是权重向量),使得在已知的数据(训练集)中机器做出的判断与现实完全相同。当X为二维向量时,相当于在平面上画出一条直线将所有的点分成两部分,一部分结果为是,另外一部分的结果为否。
        设 h ( X ) h(X) h(X)为求出来的预测函数, W T W^T WT是权重向量和输入向量的内积,那么
在这里插入图片描述
        以二维为例,算法的过程:

  • 先找一条初始的线(一般是 W 0 W_0 W0
  • 依次去判断空间内的每一个点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值