PLA算法——Percetron Learning Algorithm
1、PLA用来干什么
感知器学习算法PLA用于解决二维或者高维的线性可分问题的分类,最终分类结果是两类——是或不是。以二维数据为例,下图中第一张是线性可分的,其它两张都不是线性可分的:
2、PLA怎么实现的
PLA算法用来求解向量W(用于预测的向量,可以看作是权重向量),使得在已知的数据(训练集)中机器做出的判断与现实完全相同。当X为二维向量时,相当于在平面上画出一条直线将所有的点分成两部分,一部分结果为是,另外一部分的结果为否。
设 h ( X ) h(X) h(X)为求出来的预测函数, W T W^T WT是权重向量和输入向量的内积,那么
以二维为例,算法的过程:
- 先找一条初始的线(一般是 W 0 W_0 W0)
- 依次去判断空间内的每一个点