1.PLA算法总结

本文介绍了感知器学习算法(PLA),一种用于解决线性可分问题的算法,特别是二维或高维数据的分类。PLA以错误驱动的方式工作,当输出错误时调整权重。讨论了Naive PLA和Pocket PLA两种实现,前者适用于完全线性可分的数据,后者则能处理带噪声的数据。尽管这两种方法各有优缺点,但它们都是理解机器学习基础的重要工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

PLA(Percetron Learning Algorithm):感知学习算法,主要用于解决二维或者高维的线性可分问题,最终将问题分为两类:Yes or No。所谓线性可分就是可以找到一条直线或者一个k-1维超平面将一堆二维或K维数据中两个不同类别数据完美区分。
PLA算法是“错误驱动”的,当我们在训练这个算法的时候,只要输出值是正确的,这个算法就不会进行任何数据的调整,反之,当输出与实际值异号,这个算法就会自动调整参数的比重。算法大致流程如下图所示:
这里写图片描述
下面给出两种简单的实现方法,一种是Naive PLA,另一种为Pocket PLA。Naive PLA主要是针对数据是完全线性可分的,没有任何噪音干扰,它只要找到一个符合条件的解就会结束循环。

def naive_pla():
    w = np.ones(4)
    count = 0
    dataset=[[1,0.10723,0.64385, 0.29556    ,1],
            [1 ,0.2418, 0.83075, 0.42741,   1],
            [1 ,0.23321 ,0.81004 ,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值