我的碎碎念
文章平均质量分 86
程序员对白
「对白的算法屋」作者,带你少走弯路进大厂!
展开
-
旷视三年,我学到了什么
大家好,我是对白。做计算机视觉的朋友对于旷视这家公司应该都不陌生,之前我也在这家公司实习过,工作内容和技术还是比较有挑战性的。今天给大家分享一位在旷视工作三年的大佬,在职期间的一些收获与感悟,以下为原文。因为要找个房价和湿度都不太离谱的城市定居,所以离开了北京。有的人离职会偷些东西——或是宝贵敏感的数据;或是精妙的源码——我觉得这些都不是这家公司的内核、对个体而言一点都不重要,所以我带走一些故事。一. 一些“黑话”和乐观这边把研究员群体(Researcher)统称 R。家楠是 R 中的一员,样貌和着装给我的原创 2022-05-13 22:33:46 · 357 阅读 · 0 评论 -
大规模模型训练tricks集锦
大家好,我是对白。大规模模型训练其实就是在和计算、存储和通信玩的过程,所以我列一下跟这些相关的文章。一. 大规模模型并行策略先来介绍一下几种经典的并行范式,以及他们对应的经典文章1.1 数据并行(Data parallelism)不同设备执行相同模型,不同数据。▲数据并行这个比较简单,贴一篇PyTorch DDP:PyTorch Distributed: Experiences on Accelerating Data Parallel Training1.2 模型并行(Model Parallelism原创 2022-05-13 22:26:39 · 497 阅读 · 0 评论 -
命名实体识别的一点经验与技巧
最近做了一点微小的工作,搞了下命名实体识别(named entity recongnition, NER),这里总结一下目前的认识。内容比较杂,先亮一下目录,如图0-1。图0-1 目录一、什么是命名实体1.1 什么是实体实体(entity)指客观存在、并可相互区别的事物。实体可以是具体的人、事、物,也可以是概念。1.2 命名实体命名实体就是以名称为标识的实体。简单来说,如果我们听到一个名字,就能知道这个东西是哪一个具体的事物,那么这个事物就是命名实体。用大众的语言来说,只要有名字,就算阿猫阿狗也是一个命名实原创 2022-05-11 22:21:14 · 2105 阅读 · 1 评论 -
毕业一年经历两次大裁员......
你好,我是对白。作为21届的毕业生,今年应该大都经历过互联网裁员,那我们该如何应对以后的类似情况呢?今天就给大家分享一位博主,他也是一位校招生并经历过两次裁员,让我们一起看一看他的经历,以下为原文。作者:迈唛咩 | 编辑:对白的算法屋https://www.nowcoder.com/discuss/936411我是21届的毕业生,从去年7月份开始到现在正式入职10个月,在这短短的10个月时间我经历了两次大裁员,但是幸运的是两次裁员我都是剩下的50%。这篇文章我将对自己的offer选择、职业规划做一原创 2022-05-10 22:32:57 · 383 阅读 · 0 评论 -
从985非科班到网易伏羲CV算法岗
大家好,我是对白。今天给大家分享一位985学弟春招实习艰辛上岸网易伏羲算法岗的经历,今年疫情找个实习非常难,以下为原文。一. 前言时间已经悄然走到五月份,找暑期实习的进程也到了中末阶段,在今年疫情+互联网紧缩的情势下,找个暑期实习实属不易。。😔先后经历字节排序挂😅、阿里排序挂😅、腾讯一面挂😓and各种中小厂的艰难面试,总算有收留我的企业了!希望能帮助到后面面试的同学!二. 背景1、211本,985硕,自动化转CV。2、人脸识别、步态识别方向,所涉及的知识面是识别、注意力机制、GAN方面相关。3、无原创 2022-05-09 22:40:36 · 1100 阅读 · 0 评论 -
从华为离职了
大家好,我是对白。今天给大家分享一位博主自己从华为转正到离职的经历,整篇文章记录了他在华为的整段心路历程,看完后让作为程序员的我非常有感触,以下为原文。作者:Bai Bing | 编辑:对白的算法屋https://zhuanlan.zhihu.com/p/485029198前段时间发布过一篇文章《华为工作试用期的感触》,记录了我在华为试用期的经历。遗憾的是,我转正后看到了大家的能力和努力,也意识到在预期的时间内难以达到我想要的高度,最终经过各方面的考虑,决定放弃这个职位,重新回到外企找回适合我的节奏。依依不原创 2022-04-29 23:10:07 · 547 阅读 · 0 评论 -
第一篇ACL顶会论文中稿经历
大家好,我是对白。今天给大家分享一位同学中稿ACL论文的经历。众所周知,深度学习的兴起一大要素是数据,训练一个深度学习模型的前提是具备足够的高质量数据。自然语言处理领域也是如此。在我们的合作项目中,需要自己标领域专用的训练数据,经过调研和亲身体验,发现已有的公开标注工具并不适合我们的项目需求,例如当时用户量较大的brat,因此我们实验室决定自己开发一个面向领域的通用文本标注工具。过程:2020年,与实验室的伙伴们一起开发完这个标注工具的初版,2021年进行了细节优化并撰写了论文(这里十分感谢我的导师对我论文原创 2022-04-28 22:26:29 · 2530 阅读 · 0 评论 -
在字节实习8个月后,成功转正
大家好,我是对白。今天给大家分享一位22届学弟在字节实习8个月后成功转正的经历,他向我们展示了在字节实习的日常工作,以及转正答辩该如何准备,最后告诫学弟学妹们今年秋招会很激烈,一定要尽早投递。本文堪称大厂实习转正的教科书,相信一定会对你有所帮助,以下为原文。作者:F~~~J | 编辑:对白的算法屋https://www.nowcoder.com/discuss/940461春招快结束了,很多学弟学妹问过我要不要投实习,我22届毕业,在字节转正实习成功。整理了被问过的一些问题,分享出来,希望能给大家一点参考。原创 2022-04-27 23:01:01 · 3105 阅读 · 2 评论 -
大厂vs 小厂,那些我经历过的体验
大家好,我是对白。今天给大家分享一位朋友赤小豆的经历,她在大厂和小厂都工作过,正好最近写了一篇心得与体会,内容真实而富有情感,希望能帮助到正在抉择offer的小伙伴们,以下为原文。毕业后到底应该去大厂工作还是小厂好,这是个老生常谈的话题了。小豆从毕业至今正好 6 年的时间,经历过火速发展并成功在纳斯达克上市的初创公司,也体验过国内和国外大厂的文化。我认为这个话题,不能够简单地说哪个更好,而应该仔细权衡,根据个人的情况因地制宜。我刚毕业的时候,大众创业、万众创新的口号非常响亮,那时候行情一片大好。互联网还处于原创 2022-04-26 20:09:58 · 828 阅读 · 0 评论 -
总结 | ACL2022主会论文分类整理
大家好,我是对白。ACL 2022是CCF A类会议,人工智能领域自然语言处理(Natural Language Processing,NLP)方向最权威的国际会议之一。第60届计算语言学协会计划于今年5月22日-5月27日在爱尔兰都柏林召开。本文对ACL 2022接受列表中的的602篇主会长文论文,按不同的研究主题进行分类整理(分类标准参考 ACL 官方投稿主题),整理过程中难免有疏漏,欢迎大家在下方评论留言,交流探讨!论文列表已经同步更新到 GitHub,欢迎大家关注和 Star。目录Adversari原创 2022-04-25 16:11:15 · 12384 阅读 · 2 评论 -
杭电,强啊
大家好,我是对白。不知道大家对杭电这所大学有没有了解,以前就听闻很不错,像计算机、电子等专业都挺强的。这不前段时间,就在杭州电子科技大学人工智能学院就出了一个学霸「王炸班」。怎么讲? 一班56人,34人考研上岸。 再具体点,8名上浙大,2名清华,1名北大,剩下已就业的学生人均起薪30多万。 另外,全班56个学生获得省级以上各类学科竞赛奖励加起来就有146个。 这一话题一下登上微博热搜,引来网友纷纷围观。 双非杭电AI专业首届毕业生:起薪30万+据报道,考进清原创 2022-04-25 16:07:14 · 1919 阅读 · 0 评论 -
MSRA的2022秋招各大厂SSP+ offer
大家好,我是对白。今天给大家介绍一位MSRA朋友,他参加了2022秋招,并拿到了字节、腾讯、阿里等各大厂SSP +offer,希望他的经历能对你有所借鉴与启发,以下为原文。 前言 是安徽985小硕,研究方向是自然语言处理和推荐,去年秋招拿到了字节腾讯阿里等各大厂ssp+算法offer以及华为的16级。从身边的情况看,offer情况勉强算中上吧,和身边腾讯大咖,A+大佬们还是没法比。首先提醒一下,每一年的就业行情,公司政策不尽相同。本文的内容根据笔者秋招经历撰写,具体情况以当年招聘为准。本原创 2022-04-24 20:04:57 · 2341 阅读 · 0 评论 -
学历低于“211”建议不要去做算法
大家好,我是对白。还记得上周在极客时间做直播的时候,跟大家聊了很多我去年参加秋招的一些心得和体会,为了当时的分享,我准备了一下午的PPT和讲稿,所幸后来收获了很多人的认可与喜欢:当时观看的人数有将近两万人,没赶上那场直播的小伙伴,也可以加我好友,我会把当时的PPT课件发给你们。今天和大家分享的主要是我上周在极客时间做直播的时候,给一位同学回答的问题。他当时提问的内容是:“双非学生还有可能进大厂做算法岗吗?”很快,这条视频就在B站收获了10W的播放,两千多的点赞,相信很多读者也刷到了我的这期视频。在这里贴一下原创 2022-04-23 19:01:09 · 2425 阅读 · 0 评论 -
真的无语,MSRA连国防七子及北邮学生都不招了
转自:量子位 杨净 | 编辑:Jack Cui微软亚洲研究院——MSRA,被曝停招国防七子高校及北邮的学生!直白说,北京理工大学,北京航空航天大学,南京理工大学,南京航空航天大学,哈尔滨工业大学,哈尔滨工程大学、西北工业大学,以及北京邮电大学的学生,之后将难以进入MSRA实习,至于校招和就业是否也会受影响,尚未可知。随着更多的网友爆料显示,此次MSRA停招不仅包括上述学生,还包含所有实体清单上的大学。比如:西安交大、同济大学等等。而且消息虽然尚未官宣证实,但从不同渠道的种种反馈原创 2022-04-18 21:26:53 · 578 阅读 · 0 评论 -
整个部门就一个研发?
大家好,我是对白。今天给大家分享一位百度应届生从刚进公司遭遇leader跑路,再到整个部门只有他一个研发,最后独揽重任并做出成绩的故事,对于初入职场迷茫的同学会很有帮助,以下为原文。1. 从池子里爬出来的最开始让我去百度,其实我是拒绝的。当我得知被百度录用的部门是XX部的时候,我内心忐忑不安。这部门的产品放到十年前横行互联网,没一个能打的。但放到今天,随便挨打。你说我有扶大厦将倾,挽狂澜于既倒的能力吗?我想是没有。那我就别跟着瞎凑合了,万一哪天被裁了哭都来不及。就这样,我最想去的公司被我拒绝了。跟HR小姐姐原创 2022-04-17 21:37:21 · 3889 阅读 · 3 评论 -
百余署名AI论文被爆抄袭 智源现已致歉
2022年4月初,一起AI界的学术不端事件可谓是「引爆」了整个学术圈。 涉及到的100位作者,无一不是业内大佬。 知乎讨论也从第一天最初的几万浏览量,飞涨到了现在的600多万。对此,我们可以引用知乎用户、伦敦玛丽皇后大学学子「谢圜不是真名」的一句话来进行总结: 「学术声誉的建立是一辈子的事情,然而要推倒只需要一瞬间。」 智源官方宣布道歉2022年4月13日晚,智源研究院作为这一综述文章的组织者,在知乎的官方账号上发表公开致歉信,称「从互联网上获悉」此事,承认涉事论文有原创 2022-04-15 23:41:50 · 1918 阅读 · 0 评论 -
吴恩达知乎开课:谢邀,我来教你系统学习机器学习
你期待吴恩达在知乎的深度学习课程吗?吴恩达来知乎开课了!昨天,吴恩达在知乎开设了自己的账号,并回答了第一个提问。开设账号第一天,吴恩达就收获了 6 千多的关注。第一个回答「如何系统学习机器学习」也已经获得了 2 千多赞同。在这个回答中,吴恩达提出了三个系统学习机器学习的步骤:1、学习基础编码知识;2、学习机器学习及深度学习;3、专注于一个角色。在第一个步骤中,吴恩达提到,基本的编程技能是先决条件;数学知识也很重要,但也不必将精力过多投入到诸如线性代数、概率和统计这样的数学基础上。在第二个步骤中,吴恩达推荐了原创 2022-04-12 21:27:23 · 1037 阅读 · 0 评论 -
带你理解对比学习损失函数的性质以及温度系数的作用
点击上方,选择星标或置顶,每天给你送上干货作者 | Feng整理 | 对白的算法屋编者寄语:很多小伙伴都了解对比学习,但要说温度系数的作用可能就不太清楚了。卷友们好,我是对白。对比学习中的温度系数是一个神秘的参数,大部分论文都默认采用小的温度系数来进行自监督对比学习(例如0.07,0.2)。然而并没有对采用小温度系数的解释,以及温度系数是如何影响学习过程的,即温度系数这个角色的意义。今天给大家介绍一篇CVPR2021中研究对比损失(Contrastive Loss)温度系数的论文,由我校出品,解释原创 2022-04-10 15:39:16 · 1644 阅读 · 0 评论 -
NLPer福利 清华推出Prompt-tuning开源工具包,取代传统的微调fine-tuning
大家好,我是对白。今天要给大家推荐一下我校计算机系NLP实验室的最新成果:OpenPrompt开源工具包。有了它,初学者也可轻松部署Prompt-learning框架来利用预训练模型解决各种NLP问题,下面就让我们一起来看看吧。如何高效地使用大规模预训练语言模型(Pre-trained Language Models, PLMs)是近年NLP领域中的核心问题之一。一直以来,传统的微调(fine-tuning范式)一直是驱动大模型的“基本操作”。在微调范式中,我们需要在预训练模型上引入额外的目标函数来,从而将原创 2022-04-10 15:34:00 · 646 阅读 · 0 评论 -
深度学习热点|超直观无公式图解Contrastive Predictive Coding从脸盲说起
点击上方,选择星标或置顶,每天给你送上干货作者 | 得未曾有出品 | 对白的算法屋编者寄语:通过对比学习来区分李沁和孙怡。Contrastive Learning (对比学习) 是这两年深度学习非常热的话题,可以说是刷新了很多人对无监督学习对认知。最初谷歌写的Representation Learning with Contrastive Predictive Coding (CPC) 公式十分抽象,不好理解。我在做完了一个CPC的项目以后,决定做一张超直观的图帮助大家摆脱公式理解。在讲原创 2022-04-10 15:30:29 · 455 阅读 · 0 评论 -
千元显卡玩转百亿大模型, 清华推出工具包BMInf让模型推理轻而易举
大家好,我是对白。今天给大家推荐一下我校计算机系NLP实验室和智源团队联合发布的一款低资源大模型推理工具包BMInf,在最低配置为NVIDIA GTX 1060 6G的千元级显卡上便可以进行百亿模型的高效推理。大家快来一起试用一下吧~最近在工业界与学术界,最热门的方向莫过于预训练语言模型。而具有百亿乃至千亿参数的大规模预训练语言模型,更是业界与学术界发力的热点。但现在大模型的应用却有着较高的门槛,排队申请或需要付费的API、较长的模型响应速度、推理所需要的较为昂贵的算力资源……种种因素都影响着大模型的快速应原创 2022-04-10 15:15:20 · 653 阅读 · 1 评论 -
深度学习Loss合集:一文详解Contrastive Loss/Ranking Loss/Triplet Loss等区别与联系
点击上方,选择星标或置顶,每天给你送上干货作者 | Raúl Gómez整理 | 对白的算法屋编者寄语:本文看完,相信你会掌握它们的区别与联系。大家好,我是对白。Ranking Loss被用于很多领域和神经网络任务中(如 孪生网络Siamese Nets 或 Triplet Nets),这也是它为什么拥有 Contrastive Loss、Margin Loss、Hinge Loss 或 Triplet Loss 等这么多名字的原因。下面我就带大家彻底区分清楚这几种损失函数的区别。Ran原创 2022-04-10 15:12:51 · 1233 阅读 · 0 评论 -
Transformer将在AI领域一统天下?现在下结论还为时过早
从自然语言处理任务起家,又在图像分类和生成领域大放异彩,所向披靡的 Transformer 会成为下一个神话吗?想象一下你走进一家本地的五金店,在货架上看到一种新型的锤子。你听说过这种锤子:它比其他锤子敲得更快、更准确,而且在过去的几年里,在大多数用途中,它已经淘汰了许多其他锤子。此外,通过一些调整,比如这里加一个附件,那里拧一个螺丝,这种锤子还能变成一把锯,其切割速度能媲美其他任何替代品。一些处于工具开发前沿的专家表示,这把锤子可能预示着所有工具将融合到一个设备中。类似的故事正在人工智能领域上演。这种多功原创 2022-03-14 23:07:58 · 488 阅读 · 0 评论 -
S-SimCSE:基于抽样子网络的句子嵌入对比学习
关注 ▲对白▲ 和百万AI爱好者,一起向上生长这是对白的第 89 期分享作者 l 滑块太阳 出品 l 对白的算法屋大家好,我是对白。今天给大家介绍一个NLP领域文本匹配新SOTA:S-SimCSE。Dropout rate 采样本文不是使用固定的dropout rate,而是从一个预定义的分布抽样dropout rate。首先从一个预先定义的分布(如均匀分布)中抽取两个dropout rate r1和r2。然后,按照SimCSE,将原创 2022-03-13 20:07:04 · 1225 阅读 · 0 评论 -
北大美女学霸力压何恺明新作MAE 怒摘12个SOTA,灵感竟来自16年前CVPR论文
对白的算法屋分享 来源 | 新智元编辑 | 小咸鱼 好困【导读】近日,北大校友、约翰·霍普金斯大学博士生提出了一种新的方法:MaskFeat,力压大神何恺明的新作MAE,摘下12个SOTA!什么叫卷? CV大神何恺明的力作「Masked Autoencoders Are Scalable Vision Learners」(MAE) 刚出了一个多月。 又有新SOTA出来了! 这是一个能用于视频模型的自监督预训练方法:掩码特征预测(Ma原创 2022-03-13 19:58:29 · 328 阅读 · 0 评论 -
中科大软件学院硕士:实习秋招百多轮面试总结(中)
大家好,我是对白。继上篇中科大软件学院硕士:实习秋招百多轮面试总结(上)收获了大家一致好评后,今天继续分享其它公司的面试经验和心得体会,希望可以帮助打算找工作或跳槽的朋友们~阶段一:2020年春--日常实习13. 趋势科技一面:1. C++各种特性,static的作用(修饰函数、修饰变量、修饰成员函数的区别)2. Const的作用,拷贝构造函数的作用?如果不定义构造函数,会怎么样?何时调用?一般怎么定义?3. 类里面的数据初始化的顺序?4. C++程序运行时的链接是指什么?5. 多态是怎么实现的?原创 2022-03-13 19:55:27 · 439 阅读 · 0 评论 -
AI已经参与论文打假了
点击下方卡片,关注“对白的算法屋”公众号AI/NLP/推荐系统重磅干货,第一时间送达 对白的算法屋 一位本科创业赚数百万的清华小哥哥,BAT算法工程师。日常分享AI前沿算法、创业心得和人生感悟。偶尔逗比,一直正能量! 关原创 2022-03-13 19:52:31 · 4672 阅读 · 0 评论 -
吴恩达:回顾2021,这些大事件影响了AI这一年
作者 | Andrew Ng 译者 | 核子可乐,刘燕 12 月 23 日,机器学习大牛吴恩达(Andrew Ng)在其主编的人工智能周讯《The Batch》上发表了最新文章。文章中,吴恩达回顾了 2021 年全球人工智能在多模态、大模型、智能语音生成、Transformer 架构、各国 AI 法律举措等方面的主要进展。 大家好,我是对白。2021 年即将过去。日前,吴恩达发表了以“赠人玫瑰、手有余香”为主题的圣诞寄语。随着 2021 年底的临近,你可能正在减少工作为寒假做准备。原创 2022-03-13 19:42:27 · 243 阅读 · 0 评论 -
亚马逊VaSCL | 无监督虚拟增强困难样本,超越SimCSE
关注 ▲对白▲ 和百万AI爱好者,一起向上生长这是对白的第 90 期分享作者 l 知乎@不是大叔 出品 l 对白的算法屋大家好,我是对白。半年前SimCSE两次dropout的操作刷爆朋友圈,对比学习相关论文也席卷各大顶会顶刊;上次也总结了ACL2021的一些对比学习文章。最近组内论文分享有同事分享了一篇亚马逊AI Lab的工作,觉得还蛮有意思,该论文于2021年12月16日发布在arxiv上,目前是文本匹配新SOTA,效果超越了S原创 2022-03-13 19:39:26 · 362 阅读 · 0 评论 -
2021年不可错过的40篇AI论文,你都读过吗?
大家好,我是对白。2021即将结束了,你今年读了多少论文?虽然世界仍在从新冠疫情的破坏中复苏,人们无法向从前那样时常线下相聚、共同探讨交流关于学术领域的最新问题,但AI研究也没有停下跃进的步伐。转眼就是2021年底了,一年就这么就过去了,时光好像被偷走一样。细细数来,你今年读了多少论文?一名加拿大博主Louis Bouchard以发布时间为顺序,整理出了近40篇2021年不可错过的优秀论文。整体来看,合集中的论文偏重计算机视觉方向。在这个15分钟左右的视频中,你可以快速浏览这些论文:原创 2022-03-13 19:27:46 · 696 阅读 · 0 评论 -
周志华教授:关于深度学习的一点思考
大家好,我是对白。什么是深度学习?深度神经网络为什么要「深」?它成功背后的关键因素是什么?深度学习只能是深度神经网络吗?南京大学人工智能学院院长、计算机系主任周志华教授对这些问题进行了独到思考,值得关注。引言 深度学习已被广泛应用到涉及图像、视频、语音等的诸多任务中并取得巨大成功。如果我们问「深度学习是什么」?很可能会得到这样的回答:深度学习就是深度神经网络。至少在目前,当深度学习作为一个术语时几乎就是「深度神经网络」的同义词, 而当它指向一个技术领域时则如 SIAM News 头版文章所称[1]原创 2022-03-13 19:15:03 · 249 阅读 · 0 评论 -
从 Google 离职了
大家好,我是对白。今天分享一篇文章,它的作者是 Suket Karnawat,之前是谷歌的一名工程师,下定决定从谷歌离职,离开目前这个安稳的环境,去做一些新的探索。原文是英文,感谢 CSDN 弯月的翻译,文末可以点击阅读原文。正文每当我身边的朋友听到我从Google辞职的消息,都会不约而同地问我:“那么,接下来你打算去哪儿?”“哪儿都不去。”“所以,你打算开公司?”“不。”“那么,你打算干什么?”话语之间暗含的问题是:“你打算如何赚钱?”老实说,我还不知道。我想开始一段新生活,至于谋生的问题还没有具体打算。原创 2022-03-13 18:55:30 · 432 阅读 · 0 评论 -
聊聊我的2021,总结与展望
大家好,我是对白。回顾我的2021年,真的有很多想和大家分享的事情,这一年有我的成长和感悟,希望看到这篇文章的你,通过我的叙述也能找到自己人生的发展方向。今年年初,我顺利的从清华毕业了,取得了硕士学位:然后紧接着入职了美团,成为了一名算法工程师。初入职场的我,充满了好奇与向往,于是在工作上非常认真,leader也把组内最重要的业务交给了我。当时为了获得业务收益,春节也没有回家,而是选择在公司加班,当时还发了一条朋友圈,纪念自己进入公司第一个月的1500行代码:随着工作经验的积累和对业务的理解,我明白了一项业原创 2022-03-13 18:42:28 · 7095 阅读 · 1 评论 -
美国大厂码农薪资曝光:年薪18万美元,够养家,不够买海景房
转载自新智元全球数字经济中的头等大厂们—FAANG(脸书Facebook、亚马逊Amazon、苹果Apple、网飞Netflix、谷歌Google),在码农业界与小白公众中有着种种神奇的传说。 FAANG干三年,能在加州买房? 比如其中的产品经理个个魔武双修、身怀绝艺,觉得公司内部开发工具不行,就自己转码开始改造。 再比如即使初级入门码农(entry level),加入大厂后也是20万美元年薪起跳。有经验码农更是厉害,年薪低于35万美元就算被压低薪资(low bal原创 2022-03-13 18:33:40 · 654 阅读 · 0 评论 -
互联网VS央企,谈一谈我的选择
大家好,我是对白。今天在脉脉上看到了一个热榜第一的话题。一位中国人寿员工表示:央企研发才是性价比天花板。在这里我会列举出几条央企的性价比,并谈一谈我的看法。央企性价比一:解决北京户口。首先大家都知道,在互联网大厂拿北京户口有多么难,而进央企就可以解决北京户口成了绝大多数人的选择,这也是我当年选择面试央企的一个重要原因。后来进入公司我拿的是公司指标落的户,但这个名额非常稀少,每年只有二三十个,公司主要会看面试者的面评+学校进行综合排序,从而确定落户名额的分配。但随着去年北京出台计划单列可以落户,所有符合计划单原创 2022-03-12 23:21:36 · 4268 阅读 · 0 评论 -
文本分类还停留在BERT?对偶对比学习框架也太强了
论文简介:对偶对比学习:如何将对比学习用于有监督文本分类 论文标题:Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation论文链接:https://arxiv.org/pdf/1905.09788.pdf代码链接:https://github.com/hiyouga/dual-contrastive-learning论文作者:{Qianben Chen}1论文摘要对比学习在无监督环境下通过自我原创 2022-03-11 23:49:27 · 643 阅读 · 0 评论 -
一年级阿里算法工程师的工作总结
来源:知乎@shane miao。20年5月到现在入职阿里已经快一年了,一年之中也做了几个项目,期间趟过了不少坑,以往的年度总结都是闭门造车,写完了扔印象笔记之中给自己看,今年学习了很多大佬们的文章,收获很多,尤其是在讨论的过程之中,对自身能力的强化很是受用。于是想晒晒自己一年的收获,欢迎各位大佬交流~被暴打的现实5月入职的时候,老板安排的是去做 CTR 模型。当时看到线上模型比自己想的更加简单,于是理所当然的认为把模型升级到学界最新的那种肯定能带来效果上的提升,但是做了很多尝试,最后发现其实并没有那么简单原创 2022-03-10 23:44:38 · 311 阅读 · 0 评论 -
超强大NLP标注工具——Prodigy
大家好,我是对白。今天给大家介绍一个超强大的NLP标注工具Prodigy,不仅可以应用在实体关系抽取和文本分类等NLP任务上,还可以应用到CV和音视频任务中,来源:知乎@沉默的路人甲。一、Prodigy是什么Prodigy是一种款由Explosion AI开发的支持脚本编写的数据标注工具,用于为机器学习模型创建训练集和验证集,方便用户可以快速独立的迭代自己的机器学习模型。此外,Prodigy可以帮助使用者检查和清理数据,进行错误分析。二、Prodigy在NLP中的优势自然语言处理大部分的任务都属于监督学习类原创 2022-03-10 23:43:39 · 2820 阅读 · 0 评论 -
有一件重要的小事,需要你帮忙
大家好,我是对白。今天有件小事,想请你帮个忙。最近想给公众号改一个名字,希望能面向更广泛的读者朋友们,后期发布的文章也不再局限于高端的AI算法,还会给大家科普计算机小白该如何入门,包括:算法、开发和数据分析,以及我的职场经历、个人成长和自己的所思所想等。新的名字,我想的是要以突出「个人IP」为主,以后全网都采用这个名字。对白一直是我沿用的网名,我之所以喜欢这个名字,是觉得这个名字非常赋有诗意和特点,本身也比较好记,但如果单纯叫对白,别人会没有任何的识别度,而且这个名字也已经被占用了。我参考计算机类的其它号主原创 2022-02-18 21:04:05 · 349 阅读 · 0 评论 -
一个算法工程师复现算法的踩坑总结
关注 ▲对白▲ 和百万互联网ITer,一起精彩世界这是对白的第 36 期分享出品 l 对白的算法屋 来源 l CSDN分享 l 对白的算法屋(ID:duibainotes)大家好,我是对白。作为一名算法工程师,主要是想把自己模型调优和复现算法遇到的一些坑总结一下(里面的一行字可能是我当时花费了一周甚至更长时间得到的总结),希望能对读者有所帮助。一、熟悉数据模型是数据的浓缩版----Andrew NG的二八定律,即80%的数据+20%的=更好的A原创 2021-10-25 22:25:05 · 325 阅读 · 0 评论