https://www.jianshu.com/p/7dbfc7076e5a
常数初始化:
torch.empty(size)
返回形状为size的空tensortorch.zeros(size)
全部是0的tensortorch.zeros_like(input)
返回跟input的tensor一个size的全零tensortorch.ones(size)
全部是1的tensortorch.ones_like(input)
返回跟input的tensor一个size的全一tensortorch.arange(start=0, end, step=1)
返回一个从start到end的序列,可以只输入一个end参数,就跟python的range()一样了。实际上PyTorch也有range(),但是这个要被废掉了,替换成arange了torch.full(size, fill_value)
这个有时候比较方便,把fill_value这个数字变成size形状的张量
随机抽样(随机初始化):
torch.rand(size)
[0,1)内的均匀分布随机数torch.rand_like(input)
返回跟input的tensor一样size的0-1随机数torch.randn(size)
返回标准正太分布N(0,1)的随机数torch.normal(mean, std, out=None)
正态分布。这里注意,mean和std都是tensor,返回的形状由mean和std的形状决定,一般要求两者形状一样。如果,mean缺失,则默认为均值0,如果std缺失,则默认标准差为1.- https://pytorch.org/docs/stable/torch.html#random-sampling
二、基本操作、运算 Basic operations
1.tensor的切片、合并、变形、抽取操作
(Indexing, Slicing, Joining, Mutating)
torch.cat(seq, dim=0, out=None)
,把一堆tensor丢进去,按照dim指定的维度拼接、堆叠在一起.
torch.chunk(tensor, chunks, dim=0)
把tensor切成块,数量由chunks指定
- 切块还有
torch.split(tensor, split_size_or_sections, dim=0)
具体区别大家自行查阅文档 - 按index选择:
torch.index_select(input, dim, index, out=None)
- 按mask选择:
torch.masked_select(input, mask, out=None)
- 经常会使用的“压扁”函数:
torch.squeeze(input)
,压缩成1维。注意,压缩后的tensor和原来的tensor共享地址 - 改变形状:
torch.reshape(input, shape)
以及tensor.view(shape)
.前者是把tensor作为函数的输入,后者是任何tensor的函数。实际上,二者的返回值,都只是让我们从另一种视角看某个tensor,所以不会改变本来的形状,除非你把结果又赋值给原来的tensor。下面给一个例子对比二者的用法: