pytorch——基础

https://www.jianshu.com/p/7dbfc7076e5a

常数初始化:

  • torch.empty(size)返回形状为size的空tensor
  • torch.zeros(size)全部是0的tensor
  • torch.zeros_like(input)返回跟input的tensor一个size的全零tensor
  • torch.ones(size)全部是1的tensor
  • torch.ones_like(input)返回跟input的tensor一个size的全一tensor
  • torch.arange(start=0, end, step=1)返回一个从start到end的序列,可以只输入一个end参数,就跟python的range()一样了。实际上PyTorch也有range(),但是这个要被废掉了,替换成arange了
  • torch.full(size, fill_value)这个有时候比较方便,把fill_value这个数字变成size形状的张量

 随机抽样(随机初始化):

  • torch.rand(size) [0,1)内的均匀分布随机数
  • torch.rand_like(input)返回跟input的tensor一样size的0-1随机数
  • torch.randn(size)返回标准正太分布N(0,1)的随机数
  • torch.normal(mean, std, out=None)正态分布。这里注意,mean和std都是tensor,返回的形状由mean和std的形状决定,一般要求两者形状一样。如果,mean缺失,则默认为均值0,如果std缺失,则默认标准差为1.
  • https://pytorch.org/docs/stable/torch.html#random-sampling

 二、基本操作、运算 Basic operations

1.tensor的切片、合并、变形、抽取操作

(Indexing, Slicing, Joining, Mutating)

torch.cat(seq, dim=0, out=None),把一堆tensor丢进去,按照dim指定的维度拼接、堆叠在一起.

torch.chunk(tensor, chunks, dim=0)把tensor切成块,数量由chunks指定

  • 切块还有torch.split(tensor, split_size_or_sections, dim=0)具体区别大家自行查阅文档
  • 按index选择:torch.index_select(input, dim, index, out=None)
  • 按mask选择:torch.masked_select(input, mask, out=None)
  • 经常会使用的“压扁”函数:torch.squeeze(input),压缩成1维。注意,压缩后的tensor和原来的tensor共享地址
  • 改变形状:torch.reshape(input, shape)以及tensor.view(shape).前者是把tensor作为函数的输入,后者是任何tensor的函数。实际上,二者的返回值,都只是让我们从另一种视角看某个tensor,所以不会改变本来的形状,除非你把结果又赋值给原来的tensor。下面给一个例子对比二者的用法:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值