tensor 中的数组取值为None即test[None]的效果

import torch

test = torch.arange(10).reshape(2, 5)
print(test)
none1 = test[:, None]  # 次外层添加一层
print(test)
print(none1)
print(none1.shape)
test2 = test[None]  # 最外层添加一层
print(test2)
print(test2.shape)
# 从上边可以看出来None的作用就是添加一个维度
print(none1/test2)
print(1/6)
# 从上边可以看出none1的每一行分别除以test2的每一行就是最后的结果

输出结果:


tensor([[0, 1, 2, 3, 4],
        [5, 6, 7, 8, 9]])
tensor([[0, 1, 2, 3, 4],
        [5, 6, 7, 8, 9]])
tensor([[[0, 1, 2, 3, 4]],

        [[5, 6, 7, 8, 9]]])
torch.Size([2, 1, 5])
tensor([[[0, 1, 2, 3, 4],
         [5, 6, 7, 8, 9]]])
torch.Size([1, 2, 5])
tensor([[[   nan, 1.0000, 1.0000, 1.0000, 1.0000],
         [0.0000, 0.1667, 0.2857, 0.3750, 0.4444]],

        [[   inf, 6.0000, 3.5000, 2.6667, 2.2500],
         [1.0000, 1.0000, 1.0000, 1.0000, 1.0000]]])
0.16666666666666666
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值