import torch
test = torch.arange(10).reshape(2, 5)
print(test)
none1 = test[:, None] # 次外层添加一层
print(test)
print(none1)
print(none1.shape)
test2 = test[None] # 最外层添加一层
print(test2)
print(test2.shape)
# 从上边可以看出来None的作用就是添加一个维度
print(none1/test2)
print(1/6)
# 从上边可以看出none1的每一行分别除以test2的每一行就是最后的结果
输出结果:
tensor([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
tensor([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
tensor([[[0, 1, 2, 3, 4]],
[[5, 6, 7, 8, 9]]])
torch.Size([2, 1, 5])
tensor([[[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]]])
torch.Size([1, 2, 5])
tensor([[[ nan, 1.0000, 1.0000, 1.0000, 1.0000],
[0.0000, 0.1667, 0.2857, 0.3750, 0.4444]],
[[ inf, 6.0000, 3.5000, 2.6667, 2.2500],
[1.0000, 1.0000, 1.0000, 1.0000, 1.0000]]])
0.16666666666666666