FFT

设集合A,B,C.
C=x+y(x∈A,y∈B)求C集合

const double PI = acos(-1.0);
struct complex
{
    double r,i;
    complex(double _r = 0,double _i = 0)
    {
        r = _r;
        i = _i;
    }
    complex operator +(const complex &b)
    {
        return complex(r+b.r,i+b.i);
    }
    complex operator -(const complex &b)
    {
        return complex(r-b.r,i-b.i);
    }
    complex operator *(const complex &b)
    {
        return complex(r*b.r-i*b.i,r*b.i+i*b.r);
    }
};
void change(complex y[],int len)
{
    int i,j,k;
    for(i = 1, j = len/2; i < len-1; i++)
    {
        if(i < j)swap(y[i],y[j]);
        k = len/2;
        while( j >= k)
        {
            j -= k;
            k /= 2;
        }
        if(j < k)j += k;
    }
}
void fft(complex y[],int len,int on)
{
    change(y,len);
    for(int h = 2; h <= len; h <<= 1)
    {
        complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
        for(int j = 0; j < len; j += h)
        {
            complex w(1,0);
            for(int k = j; k < j+h/2; k++)
            {
                complex u = y[k];
                complex t = w*y[k+h/2];
                y[k] = u+t;
                y[k+h/2] = u-t;
                w = w*wn;
            }
        }
    }
    if(on == -1)
        for(int i = 0; i < len; i++)
            y[i].r /= len;
}

const int MAXN = 400040;
complex x1[MAXN];
int a[MAXN/4];
long long num[MAXN];
long long sum[MAXN];
memset(num,0,sizeof(num));
for(int i = 0; i < n; i++)
{
    scanf("%d",&a[i]);
    num[a[i]]++;
}
sort(a,a+n);
int len1 = a[n-1]+1;
int len = 1;
while( len < 2*len1 )len <<= 1;
for(int i = 0; i < len1; i++)
    x1[i] = complex(num[i],0);
for(int i = len1; i < len; i++)
    x1[i] = complex(0,0);
fft(x1,len,1);
for(int i = 0; i < len; i++)
    x1[i] = x1[i]*x1[i];
fft(x1,len,-1);
for(int i = 0; i < len; i++)
    num[i] = (long long)(x1[i].r+0.5);
len = 2*a[n-1];
//减掉取两个相同的组合
for(int i = 0; i < n; i++)
    num[a[i]+a[i]]--;
//选择的无序,除以2
for(int i = 1; i <= len; i++)
{
    num[i]/=2;
    num[i] += num[i-1];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值