C. Tram
time limit per test:1 second
memory limit per test:256 megabytes
input:standard input
output:standard output
The tram in Berland goes along a straight line from the point 0 to the point s and back, passing 1 meter per t1 seconds in both directions. It means that the tram is always in the state of uniform rectilinear motion, instantly turning around at points x = 0 and x = s.
Igor is at the point x1. He should reach the point x2. Igor passes 1 meter per t2 seconds.
Your task is to determine the minimum time Igor needs to get from the point x1 to the point x2, if it is known where the tram is and in what direction it goes at the moment Igor comes to the point x1.
Igor can enter the tram unlimited number of times at any moment when his and the tram’s positions coincide. It is not obligatory that points in which Igor enter and exit the tram are integers. Assume that any boarding and unboarding happens instantly. Igor can move arbitrary along the line (but not faster than 1 meter per t2 seconds). He can also stand at some point for some time.
Input
The first line contains three integers s, x1 and x2 (2 ≤ s ≤ 1000, 0 ≤ x1, x2 ≤ s, x1 ≠ x2) — the maximum coordinate of the point to which the tram goes, the point Igor is at, and the point he should come to.
The second line contains two integers t1 and t2 (1 ≤ t1, t2 ≤ 1000) — the time in seconds in which the tram passes 1 meter and the time in seconds in which Igor passes 1 meter.
The third line contains two integers p and d (1 ≤ p ≤ s - 1, d is either 1 or ) — the position of the tram in the moment Igor came to the point x1 and the direction of the tram at this moment. If , the tram goes in the direction from the point s to the point 0. If d = 1, the tram goes in the direction from the point 0 to the point s.
Output
Print the minimum time in seconds which Igor needs to get from the point x1 to the point x2.
Examples
Input
4 2 4
3 4
1 1
Output
8
Input
5 4 0
1 2
3 1
Output
7
Note
In the first example it is profitable for Igor to go by foot and not to wait the tram. Thus, he has to pass 2 meters and it takes 8 seconds in total, because he passes 1 meter per 4 seconds.
In the second example Igor can, for example, go towards the point x2 and get to the point 1 in 6 seconds (because he has to pass 3 meters, but he passes 1 meters per 2 seconds). At that moment the tram will be at the point 1, so Igor can enter the tram and pass 1 meter in 1 second. Thus, Igor will reach the point x2 in 7 seconds in total.
题意:
在一段长为s的路上,你在x1,目的地是x2,有一辆电车以每米t1秒的速度在往复行驶,你的速度为每米t2秒。现在电车在P,方向为d,问最短时间从x1到x2.
题解:
很明显,如果t1>t2,我们就不搭乘电车,直接步行,否则,我们取min(搭车和步行的)。这里需要分析。如果搭乘是最优解,则人移不移动是无所谓的,我们只需要求出电车从p点经过x1到x2的时间即可。
代码:
#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll n,ss,tt;
ll t1,t2;
ll pos,d,output;
void keyi()
{
int flag=0;
ll tim=0;
while(1)
{
if(pos==ss)
{
if(flag==0)flag=1;
}
if(pos==tt)
{
if(flag==1)
{
output=min(output,tim);
break;
}
}
if(pos==n&&d==1||pos==0&&d==-1)
{
d=-d;
pos+=d;
tim+=t1;
}
else
{
pos+=d;
tim+=t1;
}
}
}
int main()
{
cin>>n>>ss>>tt;
cin>>t1>>t2;
cin>>pos>>d;
if(t1<t2)
{
output=abs(ss-tt)*t2;
keyi();
cout<<output<<endl;
}
else
{
output=abs(ss-tt)*t2;
cout<<output<<endl;
}
}